亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Relaxation is a critical counterbalance to the demands of modern business life. Footbaths, a simple yet highly effective therapeutic practice, have been used for centuries across various cultures to promote relaxation and overall well-being. This study presents a novel approach to simulating the experience of a public footbath through the use of tactile and thermal stimulation of airflow to the calf and those on the foot soles. Our system aims to offer a realistic and immersive virtual footbath experience without the need for actual water, by controlling the temperature and airflow to mimic the sensation of soaking feet in water or a water wave. Without using actual water, our system can be more compact, highly responsive, and more reproducible. The layer of airflow is made as thin as possible by adjusting air outlet, and the Coanda effect is also considered to generate a water surface more realistic. The system can provide a multi-sensory experience, including visual and audio feedback of water flow, enhancing the relaxation and therapeutic benefits of a footbath.

相關內容

To overcome the performance limitations in modern computing, such as the power wall, emerging computing paradigms are gaining increasing importance. Approximate computing offers a promising solution by substantially enhancing energy efficiency and reducing latency, albeit with a trade-off in accuracy. Another emerging method is memristor-based In-Memory Computing (IMC) which has the potential to overcome the Von Neumann bottleneck. In this work, we combine these two approaches and propose two Serial APProximate IMPLY-based full adders (SAPPI). When embedded in a Ripple Carry Adder (RCA), our designs reduce the number of steps by 39%-41% and the energy consumption by 39%-42% compared to the exact algorithm. We evaluated our approach at the circuit level and compared it with State-of-the-Art (SoA) approximations where our adders improved the speed by up to 10% and the energy efficiency by up to 13%. We applied our designs in three common image processing applications where we achieved acceptable image quality with up to half of the RCA approximated. We performed a case study to demonstrate the applicability of our approximations in Machine Learning (ML) underscoring the potential gains in more complex scenarios. The proposed approach demonstrates energy savings of up to 296 mJ (21%) and a reduction of 1.3 billion (20%) computational steps when applied to Convolutional Neural Networks (CNNs) trained on the MNIST dataset while maintaining accuracy.

With the widespread application of LLM-based dialogue systems in daily life, quality assurance has become more important than ever. Recent research has successfully introduced methods to identify unexpected behaviour in single-turn scenarios. However, multi-turn dialogue testing remains underexplored, with the Oracle problem in multi-turn testing posing a persistent challenge for dialogue system developers and researchers. In this paper, we propose MORTAR, a MetamORphic multi-TuRn diAlogue testing appRoach, which mitigates the test oracle problem in the assessment of LLM-based dialogue systems. MORTAR automates the generation of follow-up question-answer (QA) dialogue test cases with multiple dialogue-level perturbations and metamorphic relations. MORTAR employs a novel knowledge graph-based dialogue information model which effectively generates perturbed dialogue test datasets and detects bugs of multi-turn dialogue systems in a low-cost manner. The proposed approach does not require an LLM as a judge, eliminating potential of any biases in the evaluation step. According to the experiment results on multiple LLM-based dialogue systems and comparisons with single-turn metamorphic testing approaches, MORTAR explores more unique bugs in LLM-based dialogue systems, especially for severe bugs that MORTAR detects up to four times more unique bugs than the most effective existing metamorphic testing approach.

As the outputs of generative AI (GenAI) techniques improve in quality, it becomes increasingly challenging to distinguish them from human-created content. Watermarking schemes are a promising approach to address the problem of distinguishing between AI and human-generated content. These schemes embed hidden signals within AI-generated content to enable reliable detection. While watermarking is not a silver bullet for addressing all risks associated with GenAI, it can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception. This paper presents a comprehensive overview of watermarking techniques for GenAI, beginning with the need for watermarking from historical and regulatory perspectives. We formalize the definitions and desired properties of watermarking schemes and examine the key objectives and threat models for existing approaches. Practical evaluation strategies are also explored, providing insights into the development of robust watermarking techniques capable of resisting various attacks. Additionally, we review recent representative works, highlight open challenges, and discuss potential directions for this emerging field. By offering a thorough understanding of watermarking in GenAI, this work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.

AuDaLa is a recently introduced programming language that follows the new data autonomous paradigm. In this paradigm, small pieces of data execute functions autonomously. Considering the paradigm and the design choices of AuDaLa, it is interesting to determine the expressiveness of the language and to create verification methods for it. In this paper, we implement Turing machines in AuDaLa and prove that implementation correct. This proves that AuDaLa is Turing complete, giving an initial indication of AuDaLa's expressiveness, and by proving the implementation correct this contributes to the creation of verification methods for AuDaLa. Additionally, we give examples of how to add in possible extensions for AuDaLa to increase its expressivity to better match conventional parallel languages, allowing for a smoother and more performant implementation of algorithms.

Constrained Markov decision processes (CMDPs), in which the agent optimizes expected payoffs while keeping the expected cost below a given threshold, are the leading framework for safe sequential decision making under stochastic uncertainty. Among algorithms for planning and learning in CMDPs, methods based on Monte Carlo tree search (MCTS) have particular importance due to their efficiency and extendibility to more complex frameworks (such as partially observable settings and games). However, current MCTS-based methods for CMDPs either struggle with finding safe (i.e., constraint-satisfying) policies, or are too conservative and do not find valuable policies. We introduce Threshold UCT (T-UCT), an online MCTS-based algorithm for CMDP planning. Unlike previous MCTS-based CMDP planners, T-UCT explicitly estimates Pareto curves of cost-utility trade-offs throughout the search tree, using these together with a novel action selection and threshold update rules to seek safe and valuable policies. Our experiments demonstrate that our approach significantly outperforms state-of-the-art methods from the literature.

Autonomous driving systems (ADS) have achieved remarkable progress in recent years. However, ensuring their safety and reliability remains a critical challenge due to the complexity and uncertainty of driving scenarios. In this paper, we focus on simulation testing for ADS, where generating diverse and effective testing scenarios is a central task. Existing fuzz testing methods face limitations, such as overlooking the temporal and spatial dynamics of scenarios and failing to leverage simulation feedback (e.g., speed, acceleration and heading) to guide scenario selection and mutation. To address these issues, we propose SimADFuzz, a novel framework designed to generate high-quality scenarios that reveal violations in ADS behavior. Specifically, SimADFuzz employs violation prediction models, which evaluate the likelihood of ADS violations, to optimize scenario selection. Moreover, SimADFuzz proposes distance-guided mutation strategies to enhance interactions among vehicles in offspring scenarios, thereby triggering more edge-case behaviors of vehicles. Comprehensive experiments demonstrate that SimADFuzz outperforms state-of-the-art fuzzers by identifying 32 more unique violations, including 4 reproducible cases of vehicle-vehicle and vehicle-pedestrian collisions. These results demonstrate SimADFuzz's effectiveness in enhancing the robustness and safety of autonomous driving systems.

Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

北京阿比特科技有限公司