亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) have demonstrated notable proficiency in code generation, with numerous prior studies showing their promising capabilities in various development scenarios. However, these studies mainly provide evaluations in research settings, which leaves a significant gap in understanding how effectively LLMs can support developers in real-world. To address this, we conducted an empirical analysis of conversations in DevGPT, a dataset collected from developers' conversations with ChatGPT (captured with the Share Link feature on platforms such as GitHub). Our empirical findings indicate that the current practice of using LLM-generated code is typically limited to either demonstrating high-level concepts or providing examples in documentation, rather than to be used as production-ready code. These findings indicate that there is much future work needed to improve LLMs in code generation before they can be integral parts of modern software development.

相關內容

External knowledge graphs (KGs) can be used to augment large language models (LLMs), while simultaneously providing an explainable knowledge base of facts that can be inspected by a human. This approach may be particularly valuable in domains where explainability is critical, like human trafficking data analysis. However, creating KGs can pose challenges. KGs parsed from documents may comprise explicit connections (those directly stated by a document) but miss implicit connections (those obvious to a human although not directly stated). To address these challenges, this preliminary research introduces the GAME-KG framework, standing for "Gaming for Augmenting Metadata and Enhancing Knowledge Graphs." GAME-KG is a federated approach to modifying explicit as well as implicit connections in KGs by using crowdsourced feedback collected through video games. GAME-KG is shown through two demonstrations: a Unity test scenario from Dark Shadows, a video game that collects feedback on KGs parsed from US Department of Justice (DOJ) Press Releases on human trafficking, and a following experiment where OpenAI's GPT-4 is prompted to answer questions based on a modified and unmodified KG. Initial results suggest that GAME-KG can be an effective framework for enhancing KGs, while simultaneously providing an explainable set of structured facts verified by humans.

The integration of path reasoning with language modeling in recommender systems has shown promise for enhancing explainability but often struggles with the authenticity of the explanations provided. Traditional models modify their architecture to produce entities and relations alternately--for example, employing separate heads for each in the model--which does not ensure the authenticity of paths reflective of actual Knowledge Graph (KG) connections. This misalignment can lead to user distrust due to the generation of corrupted paths. Addressing this, we introduce PEARLM (Path-based Explainable-Accurate Recommender based on Language Modelling), which innovates with a Knowledge Graph Constraint Decoding (KGCD) mechanism. This mechanism ensures zero incidence of corrupted paths by enforcing adherence to valid KG connections at the decoding level, agnostic of the underlying model architecture. By integrating direct token embedding learning from KG paths, PEARLM not only guarantees the generation of plausible and verifiable explanations but also highly enhances recommendation accuracy. We validate the effectiveness of our approach through a rigorous empirical assessment, employing a newly proposed metric that quantifies the integrity of explanation paths. Our results demonstrate a significant improvement over existing methods, effectively eliminating the generation of inaccurate paths and advancing the state-of-the-art in explainable recommender systems.

Large language models (LLMs) have shown their capabilities in understanding contextual and semantic information regarding knowledge of instance appearances. In this paper, we introduce a novel approach to utilize the strengths of LLMs in understanding contextual appearance variations and to leverage this knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of the crucial tasks directly related to our safety (e.g., intelligent driving systems), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-derived appearance elements and incorporate them with visual cues in pedestrian detection. To this end, we establish a description corpus that includes numerous narratives describing various appearances of pedestrians and other instances. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. Subsequently, we perform a task-prompting process to obtain appearance elements which are guided representative appearance knowledge relevant to a downstream pedestrian detection task. The obtained knowledge elements are adaptable to various detection frameworks, so that we can provide plentiful appearance information by integrating the language-derived appearance elements with visual cues within a detector. Through comprehensive experiments with various pedestrian detectors, we verify the adaptability and effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance on two public pedestrian detection benchmarks (i.e., CrowdHuman and WiderPedestrian).

As large language models (LLMs) take on complex tasks, their inputs are supplemented with longer contexts that incorporate domain knowledge or user-specific information. Yet using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until the whole context is processed by the LLM. . CacheGen is a fast context-loading module for LLM systems. First, CacheGen uses a custom tensor encoder, which embraces KV cache's distributional properties, to encode a KV cache into more compact bitstream representations with negligible encoding/decoding overhead. This reduces the bandwidth demand to fetch the KV cache. Second, to maintain low context-loading delay and high generation quality, CacheGen adapts the streaming strategies to cope with changes in available bandwidth. When available bandwidth drops, CacheGen may raise the compression level for a part of the context or choose to recompute its KV cache on the fly. We test CacheGen on four popular LLMs of various sizes and four datasets (662 contexts in total). Compared to the recent systems that reuse the KV cache, CacheGen reduces the KV cache size by 3.5-4.3x and the total delay in fetching and processing contexts by 3.2-3.7x while having negligible impact on the LLM response quality in accuracy or perplexity.

The specification of a covariance function is of paramount importance when employing Gaussian process models, but the requirement of positive definiteness severely limits those used in practice. Designing flexible stationary covariance functions is, however, straightforward in the spectral domain, where one needs only to supply a positive and symmetric spectral density. In this work, we introduce an adaptive integration framework for efficiently and accurately evaluating covariance functions and their derivatives at irregular locations directly from \textit{any} continuous, integrable spectral density. In order to make this approach computationally tractable, we employ high-order panel quadrature, the nonuniform fast Fourier transform, and a Nyquist-informed panel selection heuristic, and derive novel algebraic truncation error bounds which are used to monitor convergence. As a result, we demonstrate several orders of magnitude speedup compared to naive uniform quadrature approaches, allowing us to evaluate covariance functions from slowly decaying, singular spectral densities at millions of locations to a user-specified tolerance in seconds on a laptop. We then apply our methodology to perform gradient-based maximum likelihood estimation using a previously numerically infeasible long-memory spectral model for wind velocities below the atmospheric boundary layer.

Agents based on large language models (LLMs) have demonstrated effectiveness in solving a wide range of tasks by integrating LLMs with key modules such as planning, memory, and tool usage. Increasingly, customers are adopting LLM agents across a variety of commercial applications critical to reliability, including support for mental well-being, chemical synthesis, and software development. Nevertheless, our observations and daily use of LLM agents indicate that they are prone to making erroneous plans, especially when the tasks are complex and require long-term planning. In this paper, we propose PDoctor, a novel and automated approach to testing LLM agents and understanding their erroneous planning. As the first work in this direction, we formulate the detection of erroneous planning as a constraint satisfiability problem: an LLM agent's plan is considered erroneous if its execution violates the constraints derived from the user inputs. To this end, PDoctor first defines a domain-specific language (DSL) for user queries and synthesizes varying inputs with the assistance of the Z3 constraint solver. These synthesized inputs are natural language paragraphs that specify the requirements for completing a series of tasks. Then, PDoctor derives constraints from these requirements to form a testing oracle. We evaluate PDoctor with three mainstream agent frameworks and two powerful LLMs (GPT-3.5 and GPT-4). The results show that PDoctor can effectively detect diverse errors in agent planning and provide insights and error characteristics that are valuable to both agent developers and users. We conclude by discussing potential alternative designs and directions to extend PDoctor.

Driven by the surge in code generation using large language models (LLMs), numerous benchmarks have emerged to evaluate these LLMs capabilities. We conducted a large-scale human evaluation of HumanEval and MBPP, two popular benchmarks for Python code generation, analyzing their diversity and difficulty. Our findings unveil a critical bias towards a limited set of programming concepts, neglecting most of the other concepts entirely. Furthermore, we uncover a worrying prevalence of easy tasks, potentially inflating model performance estimations. To address these limitations, we propose a novel benchmark, PythonSaga, featuring 185 hand-crafted prompts on a balanced representation of 38 programming concepts across diverse difficulty levels.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司