亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many papers in the field of integer linear programming (ILP, for short) are devoted to problems of the type $\max\{c^\top x \colon A x = b,\, x \in \mathbb{Z}^n_{\geq 0}\}$, where all the entries of $A,b,c$ are integer, parameterized by the number of rows of $A$ and $\|A\|_{\max}$. This class of problems is known under the name of ILP problems in the standard form, adding the word "bounded" if $x \leq u$, for some integer vector $u$. Recently, many new sparsity, proximity, and complexity results were obtained for bounded and unbounded ILP problems in the standard form. In this paper, we consider ILP problems in the canonical form $$\max\{c^\top x \colon b_l \leq A x \leq b_r,\, x \in \mathbb{Z}^n\},$$ where $b_l$ and $b_r$ are integer vectors. We assume that the integer matrix $A$ has the rank $n$, $(n + m)$ rows, $n$ columns, and parameterize the problem by $m$ and $\Delta(A)$, where $\Delta(A)$ is the maximum of $n \times n$ sub-determinants of $A$, taken in the absolute value. We show that any ILP problem in the standard form can be polynomially reduced to some ILP problem in the canonical form, preserving $m$ and $\Delta(A)$, but the reverse reduction is not always possible. More precisely, we define the class of generalized ILP problems in the standard form, which includes an additional group constraint, and prove the equivalence to ILP problems in the canonical form. We generalize known sparsity, proximity, and complexity bounds for ILP problems in the canonical form. Additionally, sometimes, we strengthen previously known results for ILP problems in the canonical form, and, sometimes, we give shorter proofs. Finally, we consider the special cases of $m \in \{0,1\}$. By this way, we give specialised sparsity, proximity, and complexity bounds for the problems on simplices, Knapsack problems and Subset-Sum problems.

相關內容

歸納邏輯程序設計(ILP)是機器學習的一個分支,它依賴于邏輯程序作為一種統一的表示語言來表達例子、背景知識和假設。基于一階邏輯的ILP具有很強的表示形式,為多關系學習和數據挖掘提供了一種很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是學習結構化或半結構化關系數據的首要國際論壇。最初專注于邏輯程序的歸納,多年來,它大大擴展了研究范圍,并歡迎在邏輯學習、多關系數據挖掘、統計關系學習、圖形和樹挖掘等各個方面作出貢獻,學習其他(非命題)基于邏輯的知識表示框架,探索統計學習和其他概率方法的交叉點。官網鏈接: · 稀疏 · 向量化 · CASE · 單位向量 ·
2021 年 11 月 2 日

We study the problem of sparse tensor principal component analysis: given a tensor $\pmb Y = \pmb W + \lambda x^{\otimes p}$ with $\pmb W \in \otimes^p\mathbb{R}^n$ having i.i.d. Gaussian entries, the goal is to recover the $k$-sparse unit vector $x \in \mathbb{R}^n$. The model captures both sparse PCA (in its Wigner form) and tensor PCA. For the highly sparse regime of $k \leq \sqrt{n}$, we present a family of algorithms that smoothly interpolates between a simple polynomial-time algorithm and the exponential-time exhaustive search algorithm. For any $1 \leq t \leq k$, our algorithms recovers the sparse vector for signal-to-noise ratio $\lambda \geq \tilde{\mathcal{O}} (\sqrt{t} \cdot (k/t)^{p/2})$ in time $\tilde{\mathcal{O}}(n^{p+t})$, capturing the state-of-the-art guarantees for the matrix settings (in both the polynomial-time and sub-exponential time regimes). Our results naturally extend to the case of $r$ distinct $k$-sparse signals with disjoint supports, with guarantees that are independent of the number of spikes. Even in the restricted case of sparse PCA, known algorithms only recover the sparse vectors for $\lambda \geq \tilde{\mathcal{O}}(k \cdot r)$ while our algorithms require $\lambda \geq \tilde{\mathcal{O}}(k)$. Finally, by analyzing the low-degree likelihood ratio, we complement these algorithmic results with rigorous evidence illustrating the trade-offs between signal-to-noise ratio and running time. This lower bound captures the known lower bounds for both sparse PCA and tensor PCA. In this general model, we observe a more intricate three-way trade-off between the number of samples $n$, the sparsity $k$, and the tensor power $p$.

We prove that the path-finding problem in $\ell$-isogeny graphs and the endomorphism ring problem for supersingular elliptic curves are equivalent under reductions of polynomial expected time, assuming the generalised Riemann hypothesis. The presumed hardness of these problems is foundational for isogeny-based cryptography. As an essential tool, we develop a rigorous algorithm for the quaternion analog of the path-finding problem, building upon the heuristic method of Kohel, Lauter, Petit and Tignol. This problem, and its (previously heuristic) resolution, are both a powerful cryptanalytic tool and a building-block for cryptosystems.

GenEO ('Generalised Eigenvalue problems on the Overlap') is a method for computing an operator-dependent spectral coarse space to be combined with local solves on subdomains to form a robust parallel domain decomposition preconditioner for elliptic PDEs. It has previously been proved, in the self-adjoint and positive-definite case, that this method, when used as a preconditioner for conjugate gradients, yields iteration numbers which are completely independent of the heterogeneity of the coefficient field of the partial differential operator. We extend this theory to the case of convection-diffusion-reaction problems, which may be non-self-adjoint and indefinite, and whose discretisations are solved with preconditioned GMRES. The GenEO coarse space is defined here using a generalised eigenvalue problem based on a self-adjoint and positive-definite subproblem. We obtain GMRES iteration counts which are independent of the variation of the coefficient of the diffusion term in the operator and depend only very mildly on the variation of the other coefficients. While the iteration number estimates do grow as the non-self-adjointness and indefiniteness of the operator increases, practical tests indicate the deterioration is much milder. Thus we obtain an iterative solver which is efficient in parallel and very effective for a wide range of convection-diffusion-reaction problems.

We consider a statistical inverse learning problem, where the task is to estimate a function $f$ based on noisy point evaluations of $Af$, where $A$ is a linear operator. The function $Af$ is evaluated at i.i.d. random design points $u_n$, $n=1,...,N$ generated by an unknown general probability distribution. We consider Tikhonov regularization with general convex and $p$-homogeneous penalty functionals and derive concentration rates of the regularized solution to the ground truth measured in the symmetric Bregman distance induced by the penalty functional. We derive concrete rates for Besov norm penalties and numerically demonstrate the correspondence with the observed rates in the context of X-ray tomography.

We overcome two major bottlenecks in the study of low rank approximation by assuming the low rank factors themselves are sparse. Specifically, (1) for low rank approximation with spectral norm error, we show how to improve the best known $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time to $\mathsf{nnz}(\mathbf A)/\sqrt{\varepsilon}$ running time plus low order terms depending on the sparsity of the low rank factors, and (2) for streaming algorithms for Frobenius norm error, we show how to bypass the known $\Omega(nk/\varepsilon)$ memory lower bound and obtain an $s k (\log n)/ \mathrm{poly}(\varepsilon)$ memory bound, where $s$ is the number of non-zeros of each low rank factor. Although this algorithm is inefficient, as it must be under standard complexity theoretic assumptions, we also present polynomial time algorithms using $\mathrm{poly}(s,k,\log n,\varepsilon^{-1})$ memory that output rank $k$ approximations supported on a $O(sk/\varepsilon)\times O(sk/\varepsilon)$ submatrix. Both the prior $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time and the $nk/\varepsilon$ memory for these problems were long-standing barriers; our results give a natural way of overcoming them assuming sparsity of the low rank factors.

Conductor moving in magnetic field is quite common in electrical equipment. The numerical simulation of such problem is vital in their design and analysis of electrical equipment. The Galerkin finite element method (GFEM) is a commonly employed simulation tool, nonetheless, due to its inherent numerical instability at higher velocities, the GFEM requires upwinding techniques to handle moving conductor problems. The Streamline Upwinding/Petrov-Galerkin (SU/PG) scheme is a widely acknowledged upwinding technique, despite its error-peaking at the transverse boundary. This error at the transverse-boundary, is found to be leading to non-physical solutions. Several remedies have been suggested in the allied fluid dynamics literature, which employs non-linear, iterative techniques. The present work attempts to address this issue, by retaining the computational efficiency of the GFEM. By suitable analysis, it is shown that the source of the problem can be attributed to the Coulomb's gauge. Therefore, to solve the problem, the Coulomb's gauge is taken out from the formulation and the associated weak form is derived. The effectiveness of this technique is demonstrated with pertinent numerical results.

This paper develops a new class of algorithms for general linear systems and eigenvalue problems. These algorithms apply fast randomized sketching to accelerate subspace projection methods, such as GMRES and Rayleigh--Ritz. This approach offers great flexibility in designing the basis for the approximation subspace, which can improve scalability in many computational environments. The resulting algorithms outperform the classic methods with minimal loss of accuracy. For model problems, numerical experiments show large advantages over MATLAB's optimized routines, including a $100 \times$ speedup over gmres and a $10 \times$ speedup over eigs.

In this paper, we design and analyze a Hybrid-High Order (HHO) approximation for a class of quasilinear elliptic problems of nonmonotone type. The proposed method has several advantages, for instance, it supports arbitrary order of approximation and general polytopal meshes. The key ingredients involve local reconstruction and high-order stabilization terms. Existence and uniqueness of the discrete solution are shown by Brouwer's fixed point theorem and contraction result. A priori error estimate is shown in discrete energy norm that shows optimal order convergence rate. Numerical experiments are performed to substantiate the theoretical results.

In the negative perceptron problem we are given $n$ data points $({\boldsymbol x}_i,y_i)$, where ${\boldsymbol x}_i$ is a $d$-dimensional vector and $y_i\in\{+1,-1\}$ is a binary label. The data are not linearly separable and hence we content ourselves to find a linear classifier with the largest possible \emph{negative} margin. In other words, we want to find a unit norm vector ${\boldsymbol \theta}$ that maximizes $\min_{i\le n}y_i\langle {\boldsymbol \theta},{\boldsymbol x}_i\rangle$. This is a non-convex optimization problem (it is equivalent to finding a maximum norm vector in a polytope), and we study its typical properties under two random models for the data. We consider the proportional asymptotics in which $n,d\to \infty$ with $n/d\to\delta$, and prove upper and lower bounds on the maximum margin $\kappa_{\text{s}}(\delta)$ or -- equivalently -- on its inverse function $\delta_{\text{s}}(\kappa)$. In other words, $\delta_{\text{s}}(\kappa)$ is the overparametrization threshold: for $n/d\le \delta_{\text{s}}(\kappa)-\varepsilon$ a classifier achieving vanishing training error exists with high probability, while for $n/d\ge \delta_{\text{s}}(\kappa)+\varepsilon$ it does not. Our bounds on $\delta_{\text{s}}(\kappa)$ match to the leading order as $\kappa\to -\infty$. We then analyze a linear programming algorithm to find a solution, and characterize the corresponding threshold $\delta_{\text{lin}}(\kappa)$. We observe a gap between the interpolation threshold $\delta_{\text{s}}(\kappa)$ and the linear programming threshold $\delta_{\text{lin}}(\kappa)$, raising the question of the behavior of other algorithms.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司