亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While state-of-the-art Text-to-Speech systems can generate natural speech of very high quality at sentence level, they still meet great challenges in speech generation for paragraph / long-form reading. Such deficiencies are due to i) ignorance of cross-sentence contextual information, and ii) high computation and memory cost for long-form synthesis. To address these issues, this work develops a lightweight yet effective TTS system, ContextSpeech. Specifically, we first design a memory-cached recurrence mechanism to incorporate global text and speech context into sentence encoding. Then we construct hierarchically-structured textual semantics to broaden the scope for global context enhancement. Additionally, we integrate linearized self-attention to improve model efficiency. Experiments show that ContextSpeech significantly improves the voice quality and prosody expressiveness in paragraph reading with competitive model efficiency. Audio samples are available at: //contextspeech.github.io/demo/

相關內容

語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng)(Speech Synthesis),也稱為文語(yu)(yu)轉(zhuan)換(huan)(Text-to-Speech, TTS,它是(shi)(shi)將任(ren)意的(de)輸入文本轉(zhuan)換(huan)成(cheng)自(zi)然(ran)流暢的(de)語(yu)(yu)音(yin)(yin)(yin)(yin)輸出(chu)。語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng)涉及到人工智能、心理學(xue)、聲學(xue)、語(yu)(yu)言學(xue)、數字信號處理、計(ji)算(suan)機科學(xue)等多個學(xue)科技(ji)(ji)(ji)術,是(shi)(shi)信息處理領(ling)域中(zhong)的(de)一項前(qian)沿技(ji)(ji)(ji)術。 隨著計(ji)算(suan)機技(ji)(ji)(ji)術的(de)不斷提高,語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng)技(ji)(ji)(ji)術從早期的(de)共振峰(feng)合(he)成(cheng),逐(zhu)步發展為波形(xing)拼接合(he)成(cheng)和(he)統(tong)計(ji)參數語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng),再發展到混合(he)語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng);合(he)成(cheng)語(yu)(yu)音(yin)(yin)(yin)(yin)的(de)質量、自(zi)然(ran)度已經得到明(ming)顯提高,基本能滿(man)足一些特定(ding)場(chang)合(he)的(de)應(ying)用需求。目前(qian),語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng)技(ji)(ji)(ji)術在(zai)(zai)銀行、醫院等的(de)信息播報(bao)系(xi)統(tong)、汽車導航系(xi)統(tong)、自(zi)動應(ying)答(da)呼叫(jiao)中(zhong)心等都有廣泛(fan)應(ying)用,取得了巨(ju)大的(de)經濟效益。 另外,隨著智能手機、MP3、PDA 等與我們生活(huo)密切(qie)相關的(de)媒(mei)介的(de)大量涌現,語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng)的(de)應(ying)用也在(zai)(zai)逐(zhu)漸向(xiang)娛樂、語(yu)(yu)音(yin)(yin)(yin)(yin)教學(xue)、康復治(zhi)療等領(ling)域深入。可以說語(yu)(yu)音(yin)(yin)(yin)(yin)合(he)成(cheng)正在(zai)(zai)影響著人們生活(huo)的(de)方方面(mian)面(mian)。

Domain-specific languages for hardware can significantly enhance designer productivity, but sometimes at the cost of ease of verification. On the other hand, ISA specification languages are too static to be used during early stage design space exploration. We present PEak, an open-source hardware design and specification language, which aims to improve both design productivity and verification capability. PEak does this by providing a single source of truth for functional models, formal specifications, and RTL. PEak has been used in several academic projects, and PEak-generated RTL has been included in three fabricated hardware accelerators. In these projects, the formal capabilities of PEak were crucial for enabling both novel design space exploration techniques and automated compiler synthesis.

Deep learning models achieve excellent performance in numerous machine learning tasks. Yet, they suffer from security-related issues such as adversarial examples and poisoning (backdoor) attacks. A deep learning model may be poisoned by training with backdoored data or by modifying inner network parameters. Then, a backdoored model performs as expected when receiving a clean input, but it misclassifies when receiving a backdoored input stamped with a pre-designed pattern called "trigger". Unfortunately, it is difficult to distinguish between clean and backdoored models without prior knowledge of the trigger. This paper proposes a backdoor detection method by utilizing a special type of adversarial attack, universal adversarial perturbation (UAP), and its similarities with a backdoor trigger. We observe an intuitive phenomenon: UAPs generated from backdoored models need fewer perturbations to mislead the model than UAPs from clean models. UAPs of backdoored models tend to exploit the shortcut from all classes to the target class, built by the backdoor trigger. We propose a novel method called Universal Soldier for Backdoor detection (USB) and reverse engineering potential backdoor triggers via UAPs. Experiments on 345 models trained on several datasets show that USB effectively detects the injected backdoor and provides comparable or better results than state-of-the-art methods.

PDDLStream solvers have recently emerged as viable solutions for Task and Motion Planning (TAMP) problems, extending PDDL to problems with continuous action spaces. Prior work has shown how PDDLStream problems can be reduced to a sequence of PDDL planning problems, which can then be solved using off-the-shelf planners. However, this approach can suffer from long runtimes. In this paper we propose LAZY, a solver for PDDLStream problems that maintains a single integrated search over action skeletons, which gets progressively more geometrically informed, as samples of possible motions are lazily drawn during motion planning. We explore how learned models of goal-directed policies and current motion sampling data can be incorporated in LAZY to adaptively guide the task planner. We show that this leads to significant speed-ups in the search for a feasible solution evaluated over unseen test environments of varying numbers of objects, goals, and initial conditions. We evaluate our TAMP approach by comparing to existing solvers for PDDLStream problems on a range of simulated 7DoF rearrangement/manipulation problems.

More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the "Rashomon set" of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

北京阿比特科技有限公司