亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Rather than regressing gaze direction directly from images, we show that adding a 3D shape model can: i) improve gaze estimation accuracy, ii) perform well with lower resolution inputs and iii) provide a richer understanding of the eye-region and its constituent gaze system. Specifically, we use an `eyes and nose' 3D morphable model (3DMM) to capture the eye-region 3D facial geometry and appearance and we equip this with a geometric vergence model of gaze to give an `active-gaze 3DMM'. We show that our approach achieves state-of-the-art results on the Eyediap dataset and we present an ablation study. Our method can learn with only the ground truth gaze target point and the camera parameters, without access to the ground truth gaze origin points, thus widening the applicability of our approach compared to other methods.

相關內容

The success of a football team depends on various individual skills and performances of the selected players as well as how cohesively they perform. This work proposes a two-stage process for selecting optimal playing eleven of a football team from its pool of available players. In the first stage, for the reference team, a LASSO-induced modified trinomial logistic regression model is derived to analyze the probabilities of the three possible outcomes. The model takes into account strengths of the players in the team as well as those of the opponent, home advantage, and also the effects of individual players and player combinations beyond the recorded performances of these players. Careful use of the LASSO technique acts as an appropriate enabler of the player selection exercise while keeping the number of variables at a reasonable level. Then, in the second stage, a GRASP-type meta-heuristic is implemented for the team selection which maximizes the probability of win for the team. The work is illustrated with English Premier League data from 2008/09 to 2015/16. The application demonstrates that the model in the first stage furnishes valuable insights about the deciding factors for different teams whereas the optimization steps can be effectively used to determine the best possible starting lineup under various circumstances. Based on the adopted model and methodology, we propose a measure of efficiency in team selection by the team management and analyze the performance of EPL teams on this front.

Contemporary empirical applications frequently require flexible regression models for complex response types and large tabular or non-tabular, including image or text, data. Classical regression models either break down under the computational load of processing such data or require additional manual feature extraction to make these problems tractable. Here, we present deeptrafo, a package for fitting flexible regression models for conditional distributions using a tensorflow backend with numerous additional processors, such as neural networks, penalties, and smoothing splines. Package deeptrafo implements deep conditional transformation models (DCTMs) for binary, ordinal, count, survival, continuous, and time series responses, potentially with uninformative censoring. Unlike other available methods, DCTMs do not assume a parametric family of distributions for the response. Further, the data analyst may trade off interpretability and flexibility by supplying custom neural network architectures and smoothers for each term in an intuitive formula interface. We demonstrate how to set up, fit, and work with DCTMs for several response types. We further showcase how to construct ensembles of these models, evaluate models using inbuilt cross-validation, and use other convenience functions for DCTMs in several applications. Lastly, we discuss DCTMs in light of other approaches to regression with non-tabular data.

We develop an optimization-based algorithm for parametric model order reduction (PMOR) of linear time-invariant dynamical systems. Our method aims at minimizing the $\mathcal{H}_\infty \otimes \mathcal{L}_\infty$ approximation error in the frequency and parameter domain by an optimization of the reduced order model (ROM) matrices. State-of-the-art PMOR methods often compute several nonparametric ROMs for different parameter samples, which are then combined to a single parametric ROM. However, these parametric ROMs can have a low accuracy between the utilized sample points. In contrast, our optimization-based PMOR method minimizes the approximation error across the entire parameter domain. Moreover, due to our flexible approach of optimizing the system matrices directly, we can enforce favorable features such as a port-Hamiltonian structure in our ROMs across the entire parameter domain. Our method is an extension of the recently developed SOBMOR-algorithm to parametric systems. We extend both the ROM parameterization and the adaptive sampling procedure to the parametric case. Several numerical examples demonstrate the effectiveness and high accuracy of our method in a comparison with other PMOR methods.

Although existing neural network approaches have achieved great success on Chinese spelling correction, there is still room to improve. The model is required to avoid over-correction and to distinguish a correct token from its phonological and visually similar ones. In this paper, we propose an error-guided correction model (EGCM) to improve Chinese spelling correction. By borrowing the powerful ability of BERT, we propose a novel zero-shot error detection method to do a preliminary detection, which guides our model to attend more on the probably wrong tokens in encoding and to avoid modifying the correct tokens in generating. Furthermore, we introduce a new loss function to integrate the error confusion set, which enables our model to distinguish easily misused tokens. Moreover, our model supports highly parallel decoding to meet real application requirements. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art approaches by a remarkable margin, on both the correction quality and computation speed.

We compute precise estimates for dimensions of 3D-encryption techniques of 3D-point clouds which use permutations and rigid body motion, in which geometric stability is to be guaranteed. Few attempts are made in this direction. An attempt is established using the notions of dimensional and spatial stability by Jolfaei et al. (2015), who also proposed a 3D object encryption algorithm, claiming that it preserves dimensional and spatial stability. However, as we mathematically prove neither the algorithm, nor the associated estimates are correct. We introduce more rigorous definitions of the geometric stability of such 3D data encryption algorithms, followed by dimensionality measures

This paper describes a technique for using magnetic motion capture data to determine the joint parameters of an articulated hierarchy. This technique makes it possible to determine limb lengths, joint locations, and sensor placement for a human subject without external measurements. Instead, the joint parameters are inferred with high accuracy from the motion data acquired during the capture session. The parameters are computed by performing a linear least squares fit of a rotary joint model to the input data. A hierarchical structure for the articulated model can also be determined in situations where the topology of the model is not known. Once the system topology and joint parameters have been recovered, the resulting model can be used to perform forward and inverse kinematic procedures. We present the results of using the algorithm on human motion capture data, as well as validation results obtained with data from a simulation and a wooden linkage of known dimensions.

Gaze tracking is a valuable tool with a broad range of applications in various fields, including medicine, psychology, virtual reality, marketing, and safety. Therefore, it is essential to have gaze tracking software that is cost-efficient and high-performing. Accurately predicting gaze remains a difficult task, particularly in real-world situations where images are affected by motion blur, video compression, and noise. Super-resolution has been shown to improve image quality from a visual perspective. This work examines the usefulness of super-resolution for improving appearance-based gaze tracking. We show that not all SR models preserve the gaze direction. We propose a two-step framework based on SwinIR super-resolution model. The proposed method consistently outperforms the state-of-the-art, particularly in scenarios involving low-resolution or degraded images. Furthermore, we examine the use of super-resolution through the lens of self-supervised learning for gaze prediction. Self-supervised learning aims to learn from unlabelled data to reduce the amount of required labeled data for downstream tasks. We propose a novel architecture called SuperVision by fusing an SR backbone network to a ResNet18 (with some skip connections). The proposed SuperVision method uses 5x less labeled data and yet outperforms, by 15%, the state-of-the-art method of GazeTR which uses 100% of training data.

Deep learning appearance-based 3D gaze estimation is gaining popularity due to its minimal hardware requirements and being free of constraint. Unreliable and overconfident inferences, however, still limit the adoption of this gaze estimation method. To address the unreliable and overconfident issues, we introduce a confidence-aware model that predicts uncertainties together with gaze angle estimations. We also introduce a novel effectiveness evaluation method based on the causality between eye feature degradation and the rise in inference uncertainty to assess the uncertainty estimation. Our confidence-aware model demonstrates reliable uncertainty estimations while providing angular estimation accuracies on par with the state-of-the-art. Compared with the existing statistical uncertainty-angular-error evaluation metric, the proposed effectiveness evaluation approach can more effectively judge inferred uncertainties' performance at each prediction.

Approximate K nearest neighbor (AKNN) search is a fundamental and challenging problem. We observe that in high-dimensional space, the time consumption of nearly all AKNN algorithms is dominated by that of the distance comparison operations (DCOs). For each operation, it scans full dimensions of an object and thus, runs in linear time wrt the dimensionality. To speed it up, we propose a randomized algorithm named ADSampling which runs in logarithmic time wrt to the dimensionality for the majority of DCOs and succeeds with high probability. In addition, based on ADSampling we develop one general and two algorithm-specific techniques as plugins to enhance existing AKNN algorithms. Both theoretical and empirical studies confirm that: (1) our techniques introduce nearly no accuracy loss and (2) they consistently improve the efficiency.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司