亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model, the Gaussian graphical model, and the linear regression model. In all three cases, we derive non-asymptotic bounds for the accuracy of the DCDP change point estimators. We demonstrate that the DCDP procedures consistently estimate the change points with sharp, and in some cases, optimal rates while incurring significantly smaller computational costs than the best available algorithms. Our findings are supported by extensive numerical experiments on both synthetic and real data.

相關內容

A package query returns a package - a multiset of tuples - that maximizes or minimizes a linear objective function subject to linear constraints, thereby enabling in-database decision support. Prior work has established the equivalence of package queries to Integer Linear Programs (ILPs) and developed the SketchRefine algorithm for package query processing. While this algorithm was an important first step toward supporting prescriptive analytics scalably inside a relational database, it struggles when the data size grows beyond a few hundred million tuples or when the constraints become very tight. In this paper, we present Progressive Shading, a novel algorithm for processing package queries that can scale efficiently to billions of tuples and gracefully handle tight constraints. Progressive Shading solves a sequence of optimization problems over a hierarchy of relations, each resulting from an ever-finer partitioning of the original tuples into homogeneous groups until the original relation is obtained. This strategy avoids the premature discarding of high-quality tuples that can occur with SketchRefine. Our novel partitioning scheme, Dynamic Low Variance, can handle very large relations with multiple attributes and can dynamically adapt to both concentrated and spread-out sets of attribute values, provably outperforming traditional partitioning schemes such as KD-tree. We further optimize our system by replacing our off-the-shelf optimization software with customized ILP and LP solvers, called Dual Reducer and Parallel Dual Simplex respectively, that are highly accurate and orders of magnitude faster.

Programming by example (PBE) is an emerging programming paradigm that automatically synthesizes programs specified by user-provided input-output examples. Despite the convenience for end-users, implementing PBE tools often requires strong expertise in programming language and synthesis algorithms. Such a level of knowledge is uncommon among software developers. It greatly limits the broad adoption of PBE by the industry. To facilitate the adoption of PBE techniques, we propose a PBE framework called Bee, which leverages an "entity-action" model based on relational tables to ease PBE development for a wide but restrained range of domains. Implementing PBE tools with Bee only requires adapting domain-specific data entities and user actions to tables, with no need to design a domain-specific language or an efficient synthesis algorithm. The synthesis algorithm of Bee exploits bidirectional searching and constraint-solving techniques to address the challenge of value computation nested in table transformation. We evaluated Bee's effectiveness on 64 PBE tasks from three different domains and usability with a human study of 12 participants. Evaluation results show that Bee is easier to learn and use than the state-of-the-art PBE framework, and the bidirectional algorithm achieves comparable performance to domain-specifically optimized synthesizers.

Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions for partial differential equations (PDEs). While conventional PINNs and most related studies adopt fully-connected multilayer perceptrons (MLP) as the backbone structure, they have neglected the temporal relations in PDEs and failed to approximate the true solution. In this paper, we propose a novel Transformer-based framework, namely PINNsFormer, that accurately approximates PDEs' solutions by capturing the temporal dependencies with multi-head attention mechanisms in Transformer-based models. Instead of approximating point predictions, PINNsFormer adapts input vectors to pseudo sequences and point-wise PINNs loss to a sequential PINNs loss. In addition, PINNsFormer is equipped with a novel activation function, namely Wavelet, which anticipates the Fourier decomposition through deep neural networks. We empirically demonstrate PINNsFormer's ability to capture the PDE solutions for various scenarios, in which conventional PINNs have failed to learn. We also show that PINNsFormer achieves superior approximation accuracy on such problems than conventional PINNs with non-sensitive hyperparameters, in trade of marginal computational and memory costs, with extensive experiments.

Dimension reduction techniques have long been an important topic in statistics, and active subspaces (AS) have received much attention this past decade in the computer experiments literature. The most common approach towards estimating the AS is to use Monte Carlo with numerical gradient evaluation. While sensible in some settings, this approach has obvious drawbacks. Recent research has demonstrated that active subspace calculations can be obtained in closed form, conditional on a Gaussian process (GP) surrogate, which can be limiting in high-dimensional settings for computational reasons. In this paper, we produce the relevant calculations for a more general case when the model of interest is a linear combination of tensor products. These general equations can be applied to the GP, recovering previous results as a special case, or applied to the models constructed by other regression techniques including multivariate adaptive regression splines (MARS). Using a MARS surrogate has many advantages including improved scaling, better estimation of active subspaces in high dimensions and the ability to handle a large number of prior distributions in closed form. In one real-world example, we obtain the active subspace of a radiation-transport code with 240 inputs and 9,372 model runs in under half an hour.

Methods for anomaly detection of new physics processes are often limited to low-dimensional spaces due to the difficulty of learning high-dimensional probability densities. Particularly at the constituent level, incorporating desirable properties such as permutation invariance and variable-length inputs becomes difficult within popular density estimation methods. In this work, we introduce a permutation-invariant density estimator for particle physics data based on diffusion models, specifically designed to handle variable-length inputs. We demonstrate the efficacy of our methodology by utilizing the learned density as a permutation-invariant anomaly detection score, effectively identifying jets with low likelihood under the background-only hypothesis. To validate our density estimation method, we investigate the ratio of learned densities and compare to those obtained by a supervised classification algorithm.

Vision transformers have demonstrated remarkable success in a wide range of computer vision tasks over the last years. However, their high computational costs remain a significant barrier to their practical deployment. In particular, the complexity of transformer models is quadratic with respect to the number of input tokens. Therefore techniques that reduce the number of input tokens that need to be processed have been proposed. This paper introduces Learned Thresholds token Merging and Pruning (LTMP), a novel approach that leverages the strengths of both token merging and token pruning. LTMP uses learned threshold masking modules that dynamically determine which tokens to merge and which to prune. We demonstrate our approach with extensive experiments on vision transformers on the ImageNet classification task. Our results demonstrate that LTMP achieves state-of-the-art accuracy across reduction rates while requiring only a single fine-tuning epoch, which is an order of magnitude faster than previous methods. Code is available at //github.com/Mxbonn/ltmp .

This work proposes novel techniques for the efficient numerical simulation of parameterized, unsteady partial differential equations. Projection-based reduced order models (ROMs) such as the reduced basis method employ a (Petrov-)Galerkin projection onto a linear low-dimensional subspace. In unsteady applications, space-time reduced basis (ST-RB) methods have been developed to achieve a dimension reduction both in space and time, eliminating the computational burden of time marching schemes. However, nonaffine parameterizations dilute any computational speedup achievable by traditional ROMs. Computational efficiency can be recovered by linearizing the nonaffine operators via hyper-reduction, such as the empirical interpolation method in matrix form. In this work, we implement new hyper-reduction techniques explicitly tailored to deal with unsteady problems and embed them in a ST-RB framework. For each of the proposed methods, we develop a posteriori error bounds. We run numerical tests to compare the performance of the proposed ROMs against high-fidelity simulations, in which we combine the finite element method for space discretization on 3D geometries and the Backward Euler time integrator. In particular, we consider a heat equation and an unsteady Stokes equation. The numerical experiments demonstrate the accuracy and computational efficiency our methods retain with respect to the high-fidelity simulations.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司