亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cybersecurity risk management consists of several steps including the selection of appropriate controls to minimize risks. This is a difficult task that requires to search through all possible subsets of a set of available controls and identify those that minimize the risks of all stakeholders. Since stakeholders may have different perceptions of the risks (especially when considering the impact of threats), conflicting goals may arise that require to find the best possible trade-offs among the various needs. In this work, we propose a quantitative and (semi)automated approach to solve this problem based on the well-known notion of Pareto optimality. For validation, we show how a prototype tool based on our approach can assist in the Data Protection Impact Assessment mandated by the General Data Protection Regulation on a simplified but realistic use case scenario. We also evaluate the scalability of the approach by conducting an experimental evaluation with the prototype with encouraging results.

相關內容

Adhesive joints are increasingly used in industry for a wide variety of applications because of their favorable characteristics such as high strength-to-weight ratio, design flexibility, limited stress concentrations, planar force transfer, good damage tolerance and fatigue resistance. Finding the optimal process parameters for an adhesive bonding process is challenging: the optimization is inherently multi-objective (aiming to maximize break strength while minimizing cost) and constrained (the process should not result in any visual damage to the materials, and stress tests should not result in failures that are adhesion-related). Real life physical experiments in the lab are expensive to perform; traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem, due to the prohibitive amount of experiments required for evaluation. In this research, we successfully applied specific machine learning techniques (Gaussian Process Regression and Logistic Regression) to emulate the objective and constraint functions based on a \emph{limited} amount of experimental data. The techniques are embedded in a Bayesian optimization algorithm, which succeeds in detecting Pareto-optimal process settings in a highly efficient way (i.e., requiring a limited number of extra experiments).

Analyzing large graph data is an essential part of many modern applications, such as social networks. Due to its large computational complexity, distributed processing is frequently employed. This requires graph data to be divided across nodes, and the choice of partitioning strategy has a great impact on the execution time of the task. Yet, there is no one-size-fits-all partitioning strategy that performs well on arbitrary graph data and algorithms. The performance of a strategy depends on the characteristics of the graph data and algorithms. Moreover, due to the complexity of graph data and algorithms, manually identifying the best partitioning strategy is also infeasible. In this work, we propose a machine learning-based approach to select the most appropriate partitioning strategy for a given graph and processing algorithm. Our approach enumerates viable partitioning strategies, predicts the execution time of the target algorithm for each, and selects the partitioning strategy with the fastest estimated execution time. Our machine learning model is trained on features extracted from graph data and algorithm pseudo-code. We also propose a method that augments real execution logs of graph tasks to create a large synthetic dataset. Evaluation results show that the strategies selected by our approach lead to 1.46X faster execution time on average compared with the mean execution time of the partitioning strategies and about 0.95X the performance compared to the best partitioning strategy.

We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.

In software project management, risk management is a critical factor. Project managers use existing lists of risk or perform brainstorming to identify the risks. However, it is not easy to perceive all the risks objectively. As a result, some risks are perceived based on subjective impression, which leads to risk biases. So, our goals are (i) We clarify the risk perception of developers to enhance the reliability of the brainstorming, and (ii) we calibrate the risk assessment based on a mathematical model to make more accurate risk list. In the analysis, we collected data concerning the risk perception of 69 professional software developers via a questionnaire. The average number of years of experience among these professionals was 18.3. Using the dataset, we applied factor analysis to clarify the factors that affect the evaluation of risk impact. The questionnaire was based on the risk perception theory established by Slovic, in which "dread" and "unknown" are the major factor of risk perception. The analysis result shows that (i) risk experience (i.e., whether a developer actually faced the risk or not) sometimes affects risk assessment (evaluation of risk impact), (ii) risk perception is considered to be based on unknown and dread factors, and (iii) risk assessment can be calibrated by a mathematical model (the average absolute error was 0.20).

Nowadays, owners and developers of deep learning models must consider stringent privacy-preservation rules of their training data, usually crowd-sourced and retaining sensitive information. The most widely adopted method to enforce privacy guarantees of a deep learning model nowadays relies on optimization techniques enforcing differential privacy. According to the literature, this approach has proven to be a successful defence against several models' privacy attacks, but its downside is a substantial degradation of the models' performance. In this work, we compare the effectiveness of the differentially-private stochastic gradient descent (DP-SGD) algorithm against standard optimization practices with regularization techniques. We analyze the resulting models' utility, training performance, and the effectiveness of membership inference and model inversion attacks against the learned models. Finally, we discuss differential privacy's flaws and limits and empirically demonstrate the often superior privacy-preserving properties of dropout and l2-regularization.

An unbounded external archive has been used to store all nondominated solutions found by an evolutionary multi-objective optimization algorithm in some studies. It has been shown that a selected solution subset from the stored solutions is often better than the final population. However, the use of the unbounded archive is not always realistic. When the number of examined solutions is huge, we must pre-specify the archive size. In this study, we examine the effects of the archive size on three aspects: (i) the quality of the selected final solution set, (ii) the total computation time for the archive maintenance and the final solution set selection, and (iii) the required memory size. Unsurprisingly, the increase of the archive size improves the final solution set quality. Interestingly, the total computation time of a medium-size archive is much larger than that of a small-size archive and a huge-size archive (e.g., an unbounded archive). To decrease the computation time, we examine two ideas: periodical archive update and archiving only in later generations. Compared with updating the archive at every generation, the first idea can obtain almost the same final solution set quality using a much shorter computation time at the cost of a slight increase of the memory size. The second idea drastically decreases the computation time at the cost of a slight deterioration of the final solution set quality. Based on our experimental results, some suggestions are given about how to appropriately choose an archiving strategy and an archive size.

Machine learning (ML), being now widely accessible to the research community at large, has fostered a proliferation of new and striking applications of these emergent mathematical techniques across a wide range of disciplines. In this paper, we will focus on a particular case study: the field of paleoanthropology, which seeks to understand the evolution of the human species based on biological and cultural evidence. As we will show, the easy availability of ML algorithms and lack of expertise on their proper use among the anthropological research community has led to foundational misapplications that have appeared throughout the literature. The resulting unreliable results not only undermine efforts to legitimately incorporate ML into anthropological research, but produce potentially faulty understandings about our human evolutionary and behavioral past. The aim of this paper is to provide a brief introduction to some of the ways in which ML has been applied within paleoanthropology; we also include a survey of some basic ML algorithms for those who are not fully conversant with the field, which remains under active development. We discuss a series of missteps, errors, and violations of correct protocols of ML methods that appear disconcertingly often within the accumulating body of anthropological literature. These mistakes include use of outdated algorithms and practices; inappropriate train/test splits, sample composition, and textual explanations; as well as an absence of transparency due to the lack of data/code sharing, and the subsequent limitations imposed on independent replication. We assert that expanding samples, sharing data and code, re-evaluating approaches to peer review, and, most importantly, developing interdisciplinary teams that include experts in ML are all necessary for progress in future research incorporating ML within anthropology.

Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.

Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司