As more deep learning models are being applied in real-world applications, there is a growing need for modeling and learning the representations of neural networks themselves. An efficient representation can be used to predict target attributes of networks without the need for actual training and deployment procedures, facilitating efficient network deployment and design. Recently, inspired by the success of Transformer, some Transformer-based representation learning frameworks have been proposed and achieved promising performance in handling cell-structured models. However, graph neural network (GNN) based approaches still dominate the field of learning representation for the entire network. In this paper, we revisit Transformer and compare it with GNN to analyse their different architecture characteristics. We then propose a modified Transformer-based universal neural network representation learning model NAR-Former V2. It can learn efficient representations from both cell-structured networks and entire networks. Specifically, we first take the network as a graph and design a straightforward tokenizer to encode the network into a sequence. Then, we incorporate the inductive representation learning capability of GNN into Transformer, enabling Transformer to generalize better when encountering unseen architecture. Additionally, we introduce a series of simple yet effective modifications to enhance the ability of the Transformer in learning representation from graph structures. Our proposed method surpasses the GNN-based method NNLP by a significant margin in latency estimation on the NNLQP dataset. Furthermore, regarding accuracy prediction on the NASBench101 and NASBench201 datasets, our method achieves highly comparable performance to other state-of-the-art methods.
Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
Normalization techniques have been widely used in the field of deep learning due to their capability of enabling higher learning rates and are less careful in initialization. However, the effectiveness of popular normalization technologies is typically limited to specific areas. Unlike the standard Batch Normalization (BN) and Layer Normalization (LN), where BN computes the mean and variance along the (N,H,W) dimensions and LN computes the mean and variance along the (C,H,W) dimensions (N, C, H and W are the batch, channel, spatial height and width dimension, respectively), this paper presents a novel normalization technique called Batch Channel Normalization (BCN). To exploit both the channel and batch dependence and adaptively and combine the advantages of BN and LN based on specific datasets or tasks, BCN separately normalizes inputs along the (N, H, W) and (C, H, W) axes, then combines the normalized outputs based on adaptive parameters. As a basic block, BCN can be easily integrated into existing models for various applications in the field of computer vision. Empirical results show that the proposed technique can be seamlessly applied to various versions of CNN or Vision Transformer architecture. The code is publicly available at //github.com/AfifaKhaled/BatchChannel-Normalization
Modern machine learning models are becoming increasingly expensive to train for real-world image and text classification tasks, where massive web-scale data is collected in a streaming fashion. To reduce the training cost, online batch selection techniques have been developed to choose the most informative datapoints. However, these techniques can suffer from poor worst-class generalization performance due to class imbalance and distributional shifts. This work introduces REDUCR, a robust and efficient data downsampling method that uses class priority reweighting. REDUCR reduces the training data while preserving worst-class generalization performance. REDUCR assigns priority weights to datapoints in a class-aware manner using an online learning algorithm. We demonstrate the data efficiency and robust performance of REDUCR on vision and text classification tasks. On web-scraped datasets with imbalanced class distributions, REDUCR significantly improves worst-class test accuracy (and average accuracy), surpassing state-of-the-art methods by around 15%.
Activation functions are the linchpins of deep learning, profoundly influencing both the representational capacity and training dynamics of neural networks. They shape not only the nature of representations but also optimize convergence rates and enhance generalization potential. Appreciating this critical role, we present the Linear Oscillation (LoC) activation function, defined as $f(x) = x \times \sin(\alpha x + \beta)$. Distinct from conventional activation functions which primarily introduce non-linearity, LoC seamlessly blends linear trajectories with oscillatory deviations. The nomenclature "Linear Oscillation" is a nod to its unique attribute of infusing linear activations with harmonious oscillations, capturing the essence of the "Importance of Confusion". This concept of "controlled confusion" within network activations is posited to foster more robust learning, particularly in contexts that necessitate discerning subtle patterns. Our empirical studies reveal that, when integrated into diverse neural architectures, the LoC activation function consistently outperforms established counterparts like ReLU and Sigmoid. The stellar performance exhibited by the avant-garde Vision Transformer model using LoC further validates its efficacy. This study illuminates the remarkable benefits of the LoC over other prominent activation functions. It champions the notion that intermittently introducing deliberate complexity or "confusion" during training can spur more profound and nuanced learning. This accentuates the pivotal role of judiciously selected activation functions in shaping the future of neural network training.
Liesel is a new probabilistic programming framework developed with the aim of supporting research on Bayesian inference based on Markov chain Monte Carlo (MCMC) simulations in general and semi-parametric regression specifications in particular. Its three main components are (i) an R interface (RLiesel) for the configuration of an initial semi-parametric regression model, (ii) a graph-based model building library, where the initial model graph can be manipulated to incorporate new research ideas, and (iii) an MCMC library for designing modular inference algorithms combining multiple types of well-tested and possibly customized MCMC kernels. The graph builder as well as the MCMC library are implemented in Python, relying on JAX as a numerical computing library, and can therefore benefit from the latest machine learning technology such as automatic differentiation, just-in-time (JIT) compilation, and the use of high-performance computing devices such as tensor processing units (TPUs). Liesel provides all required tools for efficient and reliable statistical research on complex models and estimation algorithms. Its modular design allows users to expand the model library and inference algorithms, offering the flexibility and customization options to tailor the software to any specific research needs.
Face recognition (FR) systems powered by deep learning have become widely used in various applications. However, they are vulnerable to adversarial attacks, especially those based on local adversarial patches that can be physically applied to real-world objects. In this paper, we propose RADAP, a robust and adaptive defense mechanism against diverse adversarial patches in both closed-set and open-set FR systems. RADAP employs innovative techniques, such as FCutout and F-patch, which use Fourier space sampling masks to improve the occlusion robustness of the FR model and the performance of the patch segmenter. Moreover, we introduce an edge-aware binary cross-entropy (EBCE) loss function to enhance the accuracy of patch detection. We also present the split and fill (SAF) strategy, which is designed to counter the vulnerability of the patch segmenter to complete white-box adaptive attacks. We conduct comprehensive experiments to validate the effectiveness of RADAP, which shows significant improvements in defense performance against various adversarial patches, while maintaining clean accuracy higher than that of the undefended Vanilla model.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.