亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Standard fine-tuning is considered not as effective as specialized methods for model editing due to its comparatively poor performance. However, it is simple, agnostic to the architectural details of the model being edited, and able to leverage advances in standard training techniques with no additional work (e.g., black-box PEFT for computational efficiency), making it an appealing choice for a model editor. In this work, we show that standard fine-tuning alone can yield competitive model editing performance with two minor modifications. First, we optimize the conditional likelihood rather than the full likelihood. Second, in addition to the typical practice of training on randomly paraphrased edit prompts to encourage generalization, we also train on random or similar unedited facts to encourage locality. Our experiments on the ZsRE and CounterFact datasets demonstrate that these simple modifications allow standard fine-tuning to match or outperform highly specialized editors in terms of edit score.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 穩健性 · MoDELS · Learning · Performer ·
2024 年 7 月 12 日

Deep learning models have shown considerable vulnerability to adversarial attacks, particularly as attacker strategies become more sophisticated. While traditional adversarial training (AT) techniques offer some resilience, they often focus on defending against a single type of attack, e.g., the $\ell_\infty$-norm attack, which can fail for other types. This paper introduces a computationally efficient multilevel $\ell_p$ defense, called the Efficient Robust Mode Connectivity (EMRC) method, which aims to enhance a deep learning model's resilience against multiple $\ell_p$-norm attacks. Similar to analytical continuation approaches used in continuous optimization, the method blends two $p$-specific adversarially optimal models, the $\ell_1$- and $\ell_\infty$-norm AT solutions, to provide good adversarial robustness for a range of $p$. We present experiments demonstrating that our approach performs better on various attacks as compared to AT-$\ell_\infty$, E-AT, and MSD, for datasets/architectures including: CIFAR-10, CIFAR-100 / PreResNet110, WideResNet, ViT-Base.

Mainstream parameter-efficient fine-tuning (PEFT) methods, such as LoRA or Adapter, project a model's hidden states to a lower dimension, allowing pre-trained models to adapt to new data through this low-rank bottleneck. However, PEFT tasks involving multiple modalities, like vision-language (VL) tasks, require not only adaptation to new data but also learning the relationship between different modalities. Targeting at VL PEFT tasks, we propose a family of operations, called routing functions, to enhance VL alignment in the low-rank bottlenecks. These feature routing functions adopt linear operations and do not introduce new trainable parameters. In-depth analyses are conducted to study their behavior. In various VL PEFT settings, the routing functions significantly improve performance of the original PEFT methods, achieving over 20\% improvement on VQAv2 ($\text{RoBERTa}_{\text{large}}$+ViT-L/16) and 30\% on COCO Captioning (GPT2-medium+ViT-L/16). Also when fine-tuning a pre-trained multimodal model such as CLIP-BART, we observe smaller but consistent improvements across a range of VL PEFT tasks. Our code is available at //github.com/tingyu215/Routing_VLPEFT.

This paper establishes error bounds for the convergence of a piecewise linear approximation of the constrained optimal smoothing problem posed in a reproducing kernel Hilbert space (RKHS). This problem can be reformulated as a Bayesian estimation problem involving a Gaussian process related to the kernel of the RKHS. Consequently, error bounds can be interpreted as a quantification of the maximum a posteriori (MAP) accuracy. To our knowledge, no error bounds have been proposed for this type of problem so far. The convergence results are provided as a function of the grid size, the regularity of the kernel, and the distance from the kernel interpolant of the approximation to the set of constraints. Inspired by the MaxMod algorithm from recent literature, which sequentially allocates knots for the piecewise linear approximation, we conduct our analysis for non-equispaced knots. These knots are even allowed to be non-dense, which impacts the definition of the optimal smoothing solution and our error bound quantifiers. Finally, we illustrate our theorems through several numerical experiments involving constraints such as boundedness and monotonicity.

Spotforming is a target-speaker extraction technique that uses multiple microphone arrays. This method applies beamforming (BF) to each microphone array, and the common components among the BF outputs are estimated as the target source. This study proposes a new common component extraction method based on nonnegative tensor factorization (NTF) for higher model interpretability and more robust spotforming against hyperparameters. Moreover, attractor-based regularization was introduced to facilitate the automatic selection of optimal target bases in the NTF. Experimental results show that the proposed method performs better than conventional methods in spotforming performance and also shows some characteristics suitable for practical use.

Optimizing warehouse layouts is crucial due to its significant impact on efficiency and productivity. We present an AI-driven framework for automated warehouse layout generation. This framework employs constrained beam search to derive optimal layouts within given spatial parameters, adhering to all functional requirements. The feasibility of the generated layouts is verified based on criteria such as item accessibility, required minimum clearances, and aisle connectivity. A scoring function is then used to evaluate the feasible layouts considering the number of storage locations, access points, and accessibility costs. We demonstrate our method's ability to produce feasible, optimal layouts for a variety of warehouse dimensions and shapes, diverse door placements, and interconnections. This approach, currently being prepared for deployment, will enable human designers to rapidly explore and confirm options, facilitating the selection of the most appropriate layout for their use-case.

Most recent unsupervised non-rigid 3D shape matching methods are based on the functional map framework due to its efficiency and superior performance. Nevertheless, respective methods struggle to obtain spatially smooth pointwise correspondences due to the lack of proper regularisation. In this work, inspired by the success of message passing on graphs, we propose a synchronous diffusion process which we use as regularisation to achieve smoothness in non-rigid 3D shape matching problems. The intuition of synchronous diffusion is that diffusing the same input function on two different shapes results in consistent outputs. Using different challenging datasets, we demonstrate that our novel regularisation can substantially improve the state-of-the-art in shape matching, especially in the presence of topological noise.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines.

北京阿比特科技有限公司