Recently, appearance-based gaze estimation has been attracting attention in computer vision, and remarkable improvements have been achieved using various deep learning techniques. Despite such progress, most methods aim to infer gaze vectors from images directly, which causes overfitting to person-specific appearance factors. In this paper, we address these challenges and propose a novel framework: Stochastic subject-wise Adversarial gaZE learning (SAZE), which trains a network to generalize the appearance of subjects. We design a Face generalization Network (Fgen-Net) using a face-to-gaze encoder and face identity classifier and a proposed adversarial loss. The proposed loss generalizes face appearance factors so that the identity classifier inferences a uniform probability distribution. In addition, the Fgen-Net is trained by a learning mechanism that optimizes the network by reselecting a subset of subjects at every training step to avoid overfitting. Our experimental results verify the robustness of the method in that it yields state-of-the-art performance, achieving 3.89 and 4.42 on the MPIIGaze and EyeDiap datasets, respectively. Furthermore, we demonstrate the positive generalization effect by conducting further experiments using face images involving different styles generated from the generative model.
Vision-based tactile sensors have recently become popular due to their combination of low cost, very high spatial resolution, and ease of integration using widely available miniature cameras. The associated field of view and focal length, however, are difficult to package in a human-sized finger. In this paper we employ optical fiber bundles to achieve a form factor that, at 15 mm diameter, is smaller than an average human fingertip. The electronics and camera are also located remotely, further reducing package size. The sensor achieves a spatial resolution of 0.22 mm and a minimum force resolution 5 mN for normal and shear contact forces. With these attributes, the DIGIT Pinki sensor is suitable for applications such as robotic and teleoperated digital palpation. We demonstrate its utility for palpation of the prostate gland and show that it can achieve clinically relevant discrimination of prostate stiffness for phantom and ex vivo tissue.
While the study of language as typed on smartphones offers valuable insights, existing data collection methods often fall short in providing contextual information and ensuring user privacy. We present a privacy-respectful approach - context-enriched keyboard logging - that allows for the extraction of contextual information on the user's input motive, which is meaningful for linguistics, psychology, and behavioral sciences. In particular, with our approach, we enable distinguishing language contents by their channel (i.e., comments, messaging, search inputs). Filtering by channel allows for better pre-selection of data, which is in the interest of researchers and improves users' privacy. We demonstrate our approach on a large-scale six-month user study (N=624) of language use in smartphone interactions in the wild. Finally, we highlight the implications for research on language use in human-computer interaction and interdisciplinary contexts.
In the era of information overload, the value of recommender systems has been profoundly recognized in academia and industry alike. Multi-interest sequential recommendation, in particular, is a subfield that has been receiving increasing attention in recent years. By generating multiple-user representations, multi-interest learning models demonstrate superior expressiveness than single-user representation models, both theoretically and empirically. Despite major advancements in the field, three major issues continue to plague the performance and adoptability of multi-interest learning methods, the difference between training and deployment objectives, the inability to access item information, and the difficulty of industrial adoption due to its single-tower architecture. We address these challenges by proposing a novel multi-tower multi-interest framework with user representation repel. Experimental results across multiple large-scale industrial datasets proved the effectiveness and generalizability of our proposed framework.
Recent years have witnessed significant advancement in face recognition (FR) techniques, with their applications widely spread in people's lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such systems. Existing studies relying on various mechanisms have investigated the usage of saliency maps as an explanation approach, but suffer from different limitations. This paper first explores the spatial relationship between face image and its deep representation via gradient backpropagation. Then a new explanation approach FGGB has been conceived, which provides precise and insightful similarity and dissimilarity saliency maps to explain the "Accept" and "Reject" decision of an FR system. Extensive visual presentation and quantitative measurement have shown that FGGB achieves superior performance in both similarity and dissimilarity maps when compared to current state-of-the-art explainable face verification approaches.
Providing emotional support through dialogue systems is becoming increasingly important in today's world, as it can support both mental health and social interactions in many conversation scenarios. Previous works have shown that using persona is effective for generating empathetic and supportive responses. They have often relied on pre-provided persona rather than inferring them during conversations. However, it is not always possible to obtain a user persona before the conversation begins. To address this challenge, we propose PESS (Persona Extraction through Semantic Similarity), a novel framework that can automatically infer informative and consistent persona from dialogues. We devise completeness loss and consistency loss based on semantic similarity scores. The completeness loss encourages the model to generate missing persona information, and the consistency loss guides the model to distinguish between consistent and inconsistent persona. Our experimental results demonstrate that high-quality persona information inferred by PESS is effective in generating emotionally supportive responses.
While convolutional neural networks (CNNs) have achieved success in computer vision tasks, it is vulnerable to backdoor attacks. Such attacks could mislead the victim model to make attacker-chosen prediction with a specific trigger pattern. Until now, the trigger injection of existing attacks is mainly limited to spatial domain. Recent works take advantage of perceptual properties of planting specific patterns in the frequency domain, which only reflect indistinguishable pixel-wise perturbations in pixel domain. However, in the black-box setup, the inaccessibility of training process often renders more complex trigger designs. Existing frequency attacks simply handcraft the magnitude of spectrum, introducing anomaly frequency disparities between clean and poisoned data and taking risks of being removed by image processing operations (such as lossy compression and filtering). In this paper, we propose a robust low-frequency black-box backdoor attack (LFBA), which minimally perturbs low-frequency components of frequency spectrum and maintains the perceptual similarity in spatial space simultaneously. The key insight of our attack restrict the search for the optimal trigger to low-frequency region that can achieve high attack effectiveness, robustness against image transformation defenses and stealthiness in dual space. We utilize simulated annealing (SA), a form of evolutionary algorithm, to optimize the properties of frequency trigger including the number of manipulated frequency bands and the perturbation of each frequency component, without relying on the knowledge from the victim classifier. Extensive experiments on real-world datasets verify the effectiveness and robustness of LFBA against image processing operations and the state-of-the-art backdoor defenses, as well as its inherent stealthiness in both spatial and frequency space, making it resilient against frequency inspection.
Mobile networks have increased spectral efficiency through advanced multiplexing strategies that are coordinated by base stations (BS) in licensed spectrum. However, external interference on clients leads to significant performance degradation during dynamic (unlicensed) spectrum access (DSA). We introduce the notion of network tomography for DSA, whereby clients are transformed into spectrum sensors, whose joint access statistics are measured and used to account for interfering sources. Albeit promising, performing such tomography naively incurs an impractical overhead that scales exponentially with the multiplexing order of the strategies deployed -- which will only continue to grow with 5G/6G technologies. To this end, we propose a novel, scalable network tomography framework called NeTo-X that estimates joint client access statistics with just linear overhead, and forms a blue-print of the interference, thus enabling efficient DSA for future networks. NeTo-X's design incorporates intelligent algorithms that leverage multi-channel diversity and the spatial locality of interference impact on clients to accurately estimate the desired interference statistics from just pair-wise measurements of its clients. The merits of its framework are showcased in the context of resource management and jammer localization applications, where its performance significantly outperforms baseline approaches and closely approximates optimal performance at a scalable overhead.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.