亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in deep generative models, particularly with the application of CLIP (Contrastive Language Image Pretraining) to Denoising Diffusion Probabilistic Models (DDPMs), have demonstrated remarkable effectiveness in text to image generation. The well structured embedding space of CLIP has also been extended to image to shape generation with DDPMs, yielding notable results. Despite these successes, some fundamental questions arise: Does CLIP ensure the best results in shape generation from images? Can we leverage conditioning to bring explicit 3D knowledge into the generative process and obtain better quality? This study introduces CISP (Contrastive Image Shape Pre training), designed to enhance 3D shape synthesis guided by 2D images. CISP aims to enrich the CLIP framework by aligning 2D images with 3D shapes in a shared embedding space, specifically capturing 3D characteristics potentially overlooked by CLIP's text image focus. Our comprehensive analysis assesses CISP's guidance performance against CLIP guided models, focusing on generation quality, diversity, and coherence of the produced shapes with the conditioning image. We find that, while matching CLIP in generation quality and diversity, CISP substantially improves coherence with input images, underscoring the value of incorporating 3D knowledge into generative models. These findings suggest a promising direction for advancing the synthesis of 3D visual content by integrating multimodal systems with 3D representations.

相關內容

Visual-language models (VLMs) have recently been introduced in robotic mapping by using the latent representations, i.e., embeddings, of the VLMs to represent the natural language semantics in the map. The main benefit is moving beyond a small set of human-created labels toward open-vocabulary scene understanding. While there is anecdotal evidence that maps built this way support downstream tasks, such as navigation, rigorous analysis of the quality of the maps using these embeddings is lacking. We investigate two critical properties of map quality: queryability and consistency. The evaluation of queryability addresses the ability to retrieve information from the embeddings. We investigate two aspects of consistency: intra-map consistency and inter-map consistency. Intra-map consistency captures the ability of the embeddings to represent abstract semantic classes, and inter-map consistency captures the generalization properties of the representation. In this paper, we propose a way to analyze the quality of maps created using VLMs, which forms an open-source benchmark to be used when proposing new open-vocabulary map representations. We demonstrate the benchmark by evaluating the maps created by two state-of-the-art methods, VLMaps and OpenScene, using two encoders, LSeg and OpenSeg, using real-world data from the Matterport3D data set. We find that OpenScene outperforms VLMaps with both encoders, and LSeg outperforms OpenSeg with both methods.

Recent advances in the theory of Neural Operators (NOs) have enabled fast and accurate computation of the solutions to complex systems described by partial differential equations (PDEs). Despite their great success, current NO-based solutions face important challenges when dealing with spatio-temporal PDEs over long time scales. Specifically, the current theory of NOs does not present a systematic framework to perform data assimilation and efficiently correct the evolution of PDE solutions over time based on sparsely sampled noisy measurements. In this paper, we propose a learning-based state-space approach to compute the solution operators to infinite-dimensional semilinear PDEs. Exploiting the structure of semilinear PDEs and the theory of nonlinear observers in function spaces, we develop a flexible recursive method that allows for both prediction and data assimilation by combining prediction and correction operations. The proposed framework is capable of producing fast and accurate predictions over long time horizons, dealing with irregularly sampled noisy measurements to correct the solution, and benefits from the decoupling between the spatial and temporal dynamics of this class of PDEs. We show through experiments on the Kuramoto-Sivashinsky, Navier-Stokes and Korteweg-de Vries equations that the proposed model is robust to noise and can leverage arbitrary amounts of measurements to correct its prediction over a long time horizon with little computational overhead.

Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities, enabling them to solve unseen tasks solely based on input contexts without adjusting model parameters. In this paper, we study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression with a Gaussian prior. We establish a statistical task complexity bound for the attention model pretraining, showing that effective pretraining only requires a small number of independent tasks. Furthermore, we prove that the pretrained model closely matches the Bayes optimal algorithm, i.e., optimally tuned ridge regression, by achieving nearly Bayes optimal risk on unseen tasks under a fixed context length. These theoretical findings complement prior experimental research and shed light on the statistical foundations of ICL.

We design a concept for an autonomous underground freight transport system for Hanover, Germany. To evaluate the resulting system changes in overall traffic flows from an environmental perspective, we carried out an agent-based traffic simulation with MATSim. Our simulations indicate comparatively low impacts on network-wide traffic volumes. Local CO2 emissions, on the other hand, could be reduced by up to 32 %. In total, the shuttle system can replace more than 18 % of the vehicles in use with conventional combustion engines. Thus, an autonomous underground freight transportation system can contribute to environmentally friendly and economical transportation of urban goods on the condition of cooperative use of the system.

The ability to accurately identify authorship is crucial for verifying content authenticity and mitigating misinformation. Large Language Models (LLMs) have demonstrated exceptional capacity for reasoning and problem-solving. However, their potential in authorship analysis, encompassing authorship verification and attribution, remains underexplored. This paper conducts a comprehensive evaluation of LLMs in these critical tasks. Traditional studies have depended on hand-crafted stylistic features, whereas state-of-the-art approaches leverage text embeddings from pre-trained language models. These methods, which typically require fine-tuning on labeled data, often suffer from performance degradation in cross-domain applications and provide limited explainability. This work seeks to address three research questions: (1) Can LLMs perform zero-shot, end-to-end authorship verification effectively? (2) Are LLMs capable of accurately attributing authorship among multiple candidates authors (e.g., 10 and 20)? (3) How can LLMs provide explainability in authorship analysis, particularly through the role of linguistic features? Moreover, we investigate the integration of explicit linguistic features to guide LLMs in their reasoning processes. Our extensive assessment demonstrates LLMs' proficiency in both tasks without the need for domain-specific fine-tuning, providing insights into their decision-making via a detailed analysis of linguistic features. This establishes a new benchmark for future research on LLM-based authorship analysis. The code and data are available at //github.com/baixianghuang/authorship-llm.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司