亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inverse probability weighting (IPW) is widely used in many areas when data are subject to unrepresentativeness, missingness, or selection bias. An inevitable challenge with the use of IPW is that the IPW estimator can be remarkably unstable if some probabilities are very close to zero. To overcome this problem, at least three remedies have been developed in the literature: stabilizing, thresholding, and trimming. However the final estimators are still IPW type estimators, and inevitably inherit certain weaknesses of the naive IPW estimator: they may still be unstable or biased. We propose a biased-sample empirical likelihood weighting (ELW) method to serve the same general purpose as IPW, while completely overcoming the instability of IPW-type estimators by circumventing the use of inverse probabilities. The ELW weights are always well defined and easy to implement. We show theoretically that the ELW estimator is asymptotically normal and more efficient than the IPW estimator and its stabilized version for missing data problems and unequal probability sampling without replacement. Its asymptotic normality is also established under unequal probability sampling with replacement. Our simulation results and a real data analysis indicate that the ELW estimator is shift-equivariant, nearly unbiased, and usually outperforms the IPW-type estimators in terms of mean square error.

相關內容

Empirical risk minimization (ERM) is known in practice to be non-robust to distributional shift where the training and the test distributions are different. A suite of approaches, such as importance weighting, and variants of distributionally robust optimization (DRO), have been proposed to solve this problem. But a line of recent work has empirically shown that these approaches do not significantly improve over ERM in real applications with distribution shift. The goal of this work is to obtain a comprehensive theoretical understanding of this intriguing phenomenon. We first posit the class of Generalized Reweighting (GRW) algorithms, as a broad category of approaches that iteratively update model parameters based on iterative reweighting of the training samples. We show that when overparameterized models are trained under GRW, the resulting models are close to that obtained by ERM. We also show that adding small regularization which does not greatly affect the empirical training accuracy does not help. Together, our results show that a broad category of what we term GRW approaches are not able to achieve distributionally robust generalization. Our work thus has the following sobering takeaway: to make progress towards distributionally robust generalization, we either have to develop non-GRW approaches, or perhaps devise novel classification/regression loss functions that are adapted to the class of GRW approaches.

Wasserstein gradient flow has emerged as a promising approach to solve optimization problems over the space of probability distributions. A recent trend is to use the well-known JKO scheme in combination with input convex neural networks to numerically implement the proximal step. The most challenging step, in this setup, is to evaluate functions involving density explicitly, such as entropy, in terms of samples. This paper builds on the recent works with a slight but crucial difference: we propose to utilize a variational formulation of the objective function formulated as maximization over a parametric class of functions. Theoretically, the proposed variational formulation allows the construction of gradient flows directly for empirical distributions with a well-defined and meaningful objective function. Computationally, this approach replaces the computationally expensive step in existing methods, to handle objective functions involving density, with inner loop updates that only require a small batch of samples and scale well with the dimension. The performance and scalability of the proposed method are illustrated with the aid of several numerical experiments involving high-dimensional synthetic and real datasets.

We propose a new approach to apply the chaining technique in conjunction with information-theoretic measures to bound the generalization error of machine learning algorithms. Different from the deterministic chaining approach based on hierarchical partitions of a metric space, previously proposed by Asadi et al., we propose a stochastic chaining approach, which replaces the hierarchical partitions with an abstracted Markovian model borrowed from successive refinement source coding. This approach has three benefits over deterministic chaining: 1) the metric space is not necessarily bounded, 2) facilitation of subsequent analysis to yield more explicit bound, and 3) further opportunity to optimize the bound by removing the geometric rigidity of the partitions. The proposed approach includes the traditional chaining as a special case, and can therefore also utilize any deterministic chaining construction. We illustrate these benefits using the problem of estimating Gaussian mean and that of phase retrieval. For the former, we derive a bound that provides an order-wise improvement over previous results, and for the latter we provide a stochastic chain that allows optimization over the chaining parameter.

Locally interpretable model agnostic explanations (LIME) method is one of the most popular methods used to explain black-box models at a per example level. Although many variants have been proposed, few provide a simple way to produce high fidelity explanations that are also stable and intuitive. In this work, we provide a novel perspective by proposing a model agnostic local explanation method inspired by the invariant risk minimization (IRM) principle -- originally proposed for (global) out-of-distribution generalization -- to provide such high fidelity explanations that are also stable and unidirectional across nearby examples. Our method is based on a game theoretic formulation where we theoretically show that our approach has a strong tendency to eliminate features where the gradient of the black-box function abruptly changes sign in the locality of the example we want to explain, while in other cases it is more careful and will choose a more conservative (feature) attribution, a behavior which can be highly desirable for recourse. Empirically, we show on tabular, image and text data that the quality of our explanations with neighborhoods formed using random perturbations are much better than LIME and in some cases even comparable to other methods that use realistic neighbors sampled from the data manifold. This is desirable given that learning a manifold to either create realistic neighbors or to project explanations is typically expensive or may even be impossible. Moreover, our algorithm is simple and efficient to train, and can ascertain stable input features for local decisions of a black-box without access to side information such as a (partial) causal graph as has been seen in some recent works.

Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but gives significant information on the solution even for non-smooth solutions.

We give a nearly-linear time reduction that encodes any linear program as a 2-commodity flow problem with only a small blow-up in size. Under mild assumptions similar to those employed by modern fast solvers for linear programs, our reduction causes only a polylogarithmic multiplicative increase in the size of the program and runs in nearly-linear time. Our reduction applies to high-accuracy approximation algorithms and exact algorithms. Given an approximate solution to the 2-commodity flow problem, we can extract a solution to the linear program in linear time with only a polynomial factor increase in the error. This implies that any algorithm that solves the 2-commodity flow problem can solve linear programs in essentially the same time. Given a directed graph with edge capacities and two source-sink pairs, the goal of the 2-commodity flow problem is to maximize the sum of the flows routed between the two source-sink pairs subject to edge capacities and flow conservation. A 2-commodity flow can be directly written as a linear program, and thus we establish a nearly-tight equivalence between these two classes of problems. Our proof follows the outline of Itai's polynomial-time reduction of a linear program to a 2-commodity flow problem (JACM'78). Itai's reduction shows that exactly solving 2-commodity flow and exactly solving linear programming are polynomial-time equivalent. We improve Itai's reduction to nearly preserve the problem representation size in each step. In addition, we establish an error bound for approximately solving each intermediate problem in the reduction, and show that the accumulated error is polynomially bounded. We remark that our reduction does not run in strongly polynomial time and that it is open whether 2-commodity flow and linear programming are equivalent in strongly polynomial time.

The ability of a radar to discriminate in both range and Doppler velocity is completely characterized by the ambiguity function (AF) of its transmit waveform. Mathematically, it is obtained by correlating the waveform with its Doppler-shifted and delayed replicas. We consider the inverse problem of designing a radar transmit waveform that satisfies the specified AF magnitude. This process can be viewed as a signal reconstruction with some variation of phase retrieval methods. We provide a trust-region algorithm that minimizes a smoothed non-convex least-squares objective function to iteratively recover the underlying signal-of-interest for either time- or band-limited support. The method first approximates the signal using an iterative spectral algorithm and then refines the attained initialization based upon a sequence of gradient iterations. Our theoretical analysis shows that unique signal reconstruction is possible using signal samples no more than thrice the number of signal frequencies or time samples. Numerical experiments demonstrate that our method recovers both time- and band-limited signals from even sparsely and randomly sampled AFs with mean-square-error of $1\times 10^{-6}$ and $9\times 10^{-2}$ for the full noiseless samples and sparse noisy samples, respectively.

This paper is devoted to the study of non-homogeneous Bingham flows. We introduce a second-order, divergence-conforming discretization for the Bingham constitutive equations, coupled with a discontinuous Galerkin scheme for the mass density. One of the main challenges when analyzing viscoplastic materials is the treatment of the yield stress. In order to overcome this issue, in this work we propose a local regularization, based on a Huber smoothing step. We also take advantage of the properties of the divergence conforming and discontinuous Galerkin formulations to incorporate upwind discretizations to stabilize the formulation. The stability of the continuous problem and the full-discrete scheme are analyzed. Further, a semismooth Newton method is proposed for solving the obtained fully-discretized system of equations at each time step. Finally, several numerical examples that illustrate the main features of the problem and the properties of the numerical scheme are presented.

We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations. Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds. This gives rise to a new definition of disentanglement, and to a novel weakly-supervised algorithm for recovering the unknown explanatory factors behind the data. At training time, our algorithm only requires pairs of non i.i.d. data samples whose elements share at least one, possibly multidimensional, generative factor of variation. We require no knowledge on the nature of these transformations, and do not make any limiting assumption on the properties of each subspace. Our approach is easy to implement, and can be successfully applied to different kinds of data (from images to 3D surfaces) undergoing arbitrary transformations. In addition to standard synthetic benchmarks, we showcase our method in challenging real-world applications, where we compare favorably with the state of the art.

Both generative adversarial network models and variational autoencoders have been widely used to approximate probability distributions of datasets. Although they both use parametrized distributions to approximate the underlying data distribution, whose exact inference is intractable, their behaviors are very different. In this report, we summarize our experiment results that compare these two categories of models in terms of fidelity and mode collapse. We provide a hypothesis to explain their different behaviors and propose a new model based on this hypothesis. We further tested our proposed model on MNIST dataset and CelebA dataset.

北京阿比特科技有限公司