The digitization of healthcare has facilitated the sharing and re-using of medical data but has also raised concerns about confidentiality and privacy. HIPAA (Health Insurance Portability and Accountability Act) mandates removing re-identifying information before the dissemination of medical records. Thus, effective and efficient solutions for de-identifying medical data, especially those in free-text forms, are highly needed. While various computer-assisted de-identification methods, including both rule-based and learning-based, have been developed and used in prior practice, such solutions still lack generalizability or need to be fine-tuned according to different scenarios, significantly imposing restrictions in wider use. The advancement of large language models (LLM), such as ChatGPT and GPT-4, have shown great potential in processing text data in the medical domain with zero-shot in-context learning, especially in the task of privacy protection, as these models can identify confidential information by their powerful named entity recognition (NER) capability. In this work, we developed a novel GPT4-enabled de-identification framework ("DeID-GPT") to automatically identify and remove the identifying information. Compared to existing commonly used medical text data de-identification methods, our developed DeID-GPT showed the highest accuracy and remarkable reliability in masking private information from the unstructured medical text while preserving the original structure and meaning of the text. This study is one of the earliest to utilize ChatGPT and GPT-4 for medical text data processing and de-identification, which provides insights for further research and solution development on the use of LLMs such as ChatGPT/GPT-4 in healthcare. Codes and benchmarking data information are available at //github.com/yhydhx/ChatGPT-API.
Background: Artificial intelligence language models have shown promise in various applications, including assisting with clinical decision-making as demonstrated by strong performance of large language models on medical licensure exams. However, their ability to solve complex, open-ended cases, which may be representative of clinical practice, remains unexplored. Methods: In this study, the accuracy of large language AI models GPT4 and GPT3.5 in diagnosing complex clinical cases was investigated using published Case Records of the Massachusetts General Hospital. A total of 50 cases requiring a diagnosis and diagnostic test published from January 1, 2022 to April 16, 2022 were identified. For each case, models were given a prompt requesting the top three specific diagnoses and associated diagnostic tests, followed by case text, labs, and figure legends. Model outputs were assessed in comparison to the final clinical diagnosis and whether the model-predicted test would result in a correct diagnosis. Results: GPT4 and GPT3.5 accurately provided the correct diagnosis in 26% and 22% of cases in one attempt, and 46% and 42% within three attempts, respectively. GPT4 and GPT3.5 provided a correct essential diagnostic test in 28% and 24% of cases in one attempt, and 44% and 50% within three attempts, respectively. No significant differences were found between the two models, and multiple trials with identical prompts using the GPT3.5 model provided similar results. Conclusions: In summary, these models demonstrate potential usefulness in generating differential diagnoses but remain limited in their ability to provide a single unifying diagnosis in complex, open-ended cases. Future research should focus on evaluating model performance in larger datasets of open-ended clinical challenges and exploring potential human-AI collaboration strategies to enhance clinical decision-making.
The medical conversational question answering (CQA) system aims at providing a series of professional medical services to improve the efficiency of medical care. Despite the success of large language models (LLMs) in complex reasoning tasks in various fields, such as mathematics, logic, and commonsense QA, they still need to improve with the increased complexity and specialization of the medical field. This is because medical CQA tasks require not only strong medical reasoning, but also the ability to think broadly and deeply. In this paper, to address these challenges in medical CQA tasks that need to be considered and understood in many aspects, we propose the Holistically Thought (HoT) method, which is designed to guide the LLMs to perform the diffused and focused thinking for generating high-quality medical responses. The proposed HoT method has been evaluated through automated and manual assessments in three different medical CQA datasets containing the English and Chinese languages. The extensive experimental results show that our method can produce more correctness, professional, and considerate answers than several state-of-the-art (SOTA) methods, manifesting its effectiveness. Our code in //github.com/WENGSYX/HoT.
This study explores the state-of-the-art, application, and maturity of socio-technical security models for industries and sectors dependent on CI and investigates the gap between academic research and industry practices concerning the modelling of both the social and technical aspects of security. Systematic study and critical analysis of literature show that a steady and growing on socio-technical security M&S approaches is emerging, possibly prompted by the growing recognition that digital systems and workplaces do not only comprise technologies, but also social (human) and sometimes physical elements.
Federated learning (FL) is a new distributed machine learning framework known for its benefits on data privacy and communication efficiency. Since full client participation in many cases is infeasible due to constrained resources, partial participation FL algorithms have been investigated that proactively select/sample a subset of clients, aiming to achieve learning performance close to the full participation case. This paper studies a passive partial client participation scenario that is much less well understood, where partial participation is a result of external events, namely client dropout, rather than a decision of the FL algorithm. We cast FL with client dropout as a special case of a larger class of FL problems where clients can submit substitute (possibly inaccurate) local model updates. Based on our convergence analysis, we develop a new algorithm FL-FDMS that discovers friends of clients (i.e., clients whose data distributions are similar) on-the-fly and uses friends' local updates as substitutes for the dropout clients, thereby reducing the substitution error and improving the convergence performance. A complexity reduction mechanism is also incorporated into FL-FDMS, making it both theoretically sound and practically useful. Experiments on MNIST and CIFAR-10 confirmed the superior performance of FL-FDMS in handling client dropout in FL.
A Large Language Model (LLM) is an artificial intelligence system that has been trained on vast amounts of natural language data, enabling it to generate human-like responses to written or spoken language input. GPT-3.5 is an example of an LLM that supports a conversational agent called ChatGPT. In this work, we used a series of novel prompts to determine whether ChatGPT shows heuristics, biases, and other decision effects. We also tested the same prompts on human participants. Across four studies, we found that ChatGPT was influenced by random anchors in making estimates (Anchoring Heuristic, Study 1); it judged the likelihood of two events occurring together to be higher than the likelihood of either event occurring alone, and it was erroneously influenced by salient anecdotal information (Representativeness and Availability Heuristic, Study 2); it found an item to be more efficacious when its features were presented positively rather than negatively - even though both presentations contained identical information (Framing Effect, Study 3); and it valued an owned item more than a newly found item even though the two items were identical (Endowment Effect, Study 4). In each study, human participants showed similar effects. Heuristics and related decision effects in humans are thought to be driven by cognitive and affective processes such as loss aversion and effort reduction. The fact that an LLM - which lacks these processes - also shows such effects invites consideration of the possibility that language may play a role in generating these effects in humans.
Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual effort, Zero-shot-CoT concatenates the target problem statement with "Let's think step by step" as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at //github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.
Query expansion is a widely used technique to improve the recall of search systems. In this paper, we propose an approach to query expansion that leverages the generative abilities of Large Language Models (LLMs). Unlike traditional query expansion approaches such as Pseudo-Relevance Feedback (PRF) that relies on retrieving a good set of pseudo-relevant documents to expand queries, we rely on the generative and creative abilities of an LLM and leverage the knowledge inherent in the model. We study a variety of different prompts, including zero-shot, few-shot and Chain-of-Thought (CoT). We find that CoT prompts are especially useful for query expansion as these prompts instruct the model to break queries down step-by-step and can provide a large number of terms related to the original query. Experimental results on MS-MARCO and BEIR demonstrate that query expansions generated by LLMs can be more powerful than traditional query expansion methods.
This paper presents an innovative approach to address the problems researchers face in Emotion Aware Recommender Systems (EARS): the difficulty and cumbersome collecting voluminously good quality emotion-tagged datasets and an effective way to protect users' emotional data privacy. Without enough good-quality emotion-tagged datasets, researchers cannot conduct repeatable affective computing research in EARS that generates personalized recommendations based on users' emotional preferences. Similarly, if we fail to fully protect users' emotional data privacy, users could resist engaging with EARS services. This paper introduced a method that detects affective features in subjective passages using the Generative Pre-trained Transformer Technology, forming the basis of the Affective Index and Affective Index Indicator (AII). Eliminate the need for users to build an affective feature detection mechanism. The paper advocates for a separation of responsibility approach where users protect their emotional profile data while EARS service providers refrain from retaining or storing it. Service providers can update users' Affective Indices in memory without saving their privacy data, providing Affective Aware recommendations without compromising user privacy. This paper offers a solution to the subjectivity and variability of emotions, data privacy concerns, and evaluation metrics and benchmarks, paving the way for future EARS research.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.