亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum Natural Language Processing (QNLP) deals with the design and implementation of NLP models intended to be run on quantum hardware. In this paper, we present results on the first NLP experiments conducted on Noisy Intermediate-Scale Quantum (NISQ) computers for datasets of size greater than 100 sentences. Exploiting the formal similarity of the compositional model of meaning by Coecke, Sadrzadeh and Clark (2010) with quantum theory, we create representations for sentences that have a natural mapping to quantum circuits. We use these representations to implement and successfully train NLP models that solve simple sentence classification tasks on quantum hardware. We conduct quantum simulations that compare the syntax-sensitive model of Coecke et al. with two baselines that use less or no syntax; specifically, we implement the quantum analogues of a "bag-of-words" model, where syntax is not taken into account at all, and of a word-sequence model, where only word order is respected. We demonstrate that all models converge smoothly both in simulations and when run on quantum hardware, and that the results are the expected ones based on the nature of the tasks and the datasets used. Another important goal of this paper is to describe in a way accessible to AI and NLP researchers the main principles, process and challenges of experiments on quantum hardware. Our aim in doing this is to take the first small steps in this unexplored research territory and pave the way for practical Quantum Natural Language Processing.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · NLP · ChatGPT · Better · MoDELS ·
2023 年 6 月 16 日

Despite the success of ChatGPT, its performances on most NLP tasks are still well below the supervised baselines. In this work, we looked into the causes, and discovered that its subpar performance was caused by the following factors: (1) token limit in the prompt does not allow for the full utilization of the supervised datasets; (2) mismatch between the generation nature of ChatGPT and NLP tasks; (3) intrinsic pitfalls of LLMs models, e.g., hallucination, overly focus on certain keywords, etc. In this work, we propose a collection of general modules to address these issues, in an attempt to push the limits of ChatGPT on NLP tasks. Our proposed modules include (1) a one-input-multiple-prompts strategy that employs multiple prompts for one input to accommodate more demonstrations; (2) using fine-tuned models for better demonstration retrieval; (3) transforming tasks to formats that are more tailored to the generation nature; (4) employing reasoning strategies that are tailored to addressing the task-specific complexity; (5) the self-verification strategy to address the hallucination issue of LLMs; (6) the paraphrase strategy to improve the robustness of model predictions. We conduct experiments on 21 datasets of 10 representative NLP tasks, including question answering, commonsense reasoning, natural language inference, sentiment analysis, named entity recognition, entity-relation extraction, event extraction, dependency parsing, semantic role labeling, and part-of-speech tagging. Using the proposed assemble of techniques, we are able to significantly boost the performance of ChatGPT on the selected NLP tasks, achieving performances comparable to or better than supervised baselines, or even existing SOTA performances.

Anticipating audience reaction towards a certain text is integral to several facets of society ranging from politics, research, and commercial industries. Sentiment analysis (SA) is a useful natural language processing (NLP) technique that utilizes lexical/statistical and deep learning methods to determine whether different-sized texts exhibit positive, negative, or neutral emotions. Recurrent networks are widely used in machine-learning communities for problems with sequential data. However, a drawback of models based on Long-Short Term Memory networks and Gated Recurrent Units is the significantly high number of parameters, and thus, such models are computationally expensive. This drawback is even more significant when the available data are limited. Also, such models require significant over-parameterization and regularization to achieve optimal performance. Tensorized models represent a potential solution. In this paper, we classify the sentiment of some social media posts. We compare traditional recurrent models with their tensorized version, and we show that with the tensorized models, we reach comparable performances with respect to the traditional models while using fewer resources for the training.

Humans navigate in their environment by learning a mental model of the world through passive observation and active interaction. Their world model allows them to anticipate what might happen next and act accordingly with respect to an underlying objective. Such world models hold strong promises for planning in complex environments like in autonomous driving. A human driver, or a self-driving system, perceives their surroundings with their eyes or their cameras. They infer an internal representation of the world which should: (i) have spatial memory (e.g. occlusions), (ii) fill partially observable or noisy inputs (e.g. when blinded by sunlight), and (iii) be able to reason about unobservable events probabilistically (e.g. predict different possible futures). They are embodied intelligent agents that can predict, plan, and act in the physical world through their world model. In this thesis we present a general framework to train a world model and a policy, parameterised by deep neural networks, from camera observations and expert demonstrations. We leverage important computer vision concepts such as geometry, semantics, and motion to scale world models to complex urban driving scenes. First, we propose a model that predicts important quantities in computer vision: depth, semantic segmentation, and optical flow. We then use 3D geometry as an inductive bias to operate in the bird's-eye view space. We present for the first time a model that can predict probabilistic future trajectories of dynamic agents in bird's-eye view from 360{\deg} surround monocular cameras only. Finally, we demonstrate the benefits of learning a world model in closed-loop driving. Our model can jointly predict static scene, dynamic scene, and ego-behaviour in an urban driving environment.

Multiple measures, such as WEAT or MAC, attempt to quantify the magnitude of bias present in word embeddings in terms of a single-number metric. However, such metrics and the related statistical significance calculations rely on treating pre-averaged data as individual data points and employing bootstrapping techniques with low sample sizes. We show that similar results can be easily obtained using such methods even if the data are generated by a null model lacking the intended bias. Consequently, we argue that this approach generates false confidence. To address this issue, we propose a Bayesian alternative: hierarchical Bayesian modeling, which enables a more uncertainty-sensitive inspection of bias in word embeddings at different levels of granularity. To showcase our method, we apply it to Religion, Gender, and Race word lists from the original research, together with our control neutral word lists. We deploy the method using Google, Glove, and Reddit embeddings. Further, we utilize our approach to evaluate a debiasing technique applied to Reddit word embedding. Our findings reveal a more complex landscape than suggested by the proponents of single-number metrics. The datasets and source code for the paper are publicly available.

The allocation of limited resources to a large number of potential candidates presents a pervasive challenge. In the context of ranking and selecting top candidates from heteroscedastic units, conventional methods often result in over-representations of subpopulations, and this issue is further exacerbated in large-scale settings where thousands of candidates are considered simultaneously. To address this challenge, we propose a new multiple comparison framework that incorporates a modified power notion to prioritize the selection of important effects and employs a novel ranking metric to assess the relative importance of units. We develop both oracle and data-driven algorithms, and demonstrate their effectiveness in controlling the error rates and achieving optimality. We evaluate the numerical performance of our proposed method using simulated and real data. The results show that our framework enables a more balanced selection of effects that are both statistically significant and practically important, and results in an objective and relevant ranking scheme that is well-suited to practical scenarios.

Pre-trained multi-modal vision-language models (VLMs) are becoming increasingly popular due to their exceptional performance on downstream vision applications, particularly in the few- and zero-shot settings. However, selecting the best-performing VLM for some downstream applications is non-trivial, as it is dataset and task-dependent. Meanwhile, the exhaustive evaluation of all available VLMs on a novel application is not only time and computationally demanding but also necessitates the collection of a labeled dataset for evaluation. As the number of open-source VLM variants increases, there is a need for an efficient model selection strategy that does not require access to a curated evaluation dataset. This paper proposes a novel task and benchmark for efficiently evaluating VLMs' zero-shot performance on downstream applications without access to the downstream task dataset. Specifically, we introduce a new task LOVM: Language-Only Vision Model Selection, where methods are expected to perform both model selection and performance prediction based solely on a text description of the desired downstream application. We then introduced an extensive LOVM benchmark consisting of ground-truth evaluations of 35 pre-trained VLMs and 23 datasets, where methods are expected to rank the pre-trained VLMs and predict their zero-shot performance.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.

北京阿比特科技有限公司