Throughput is a main performance objective in communication networks. This paper considers a fundamental maximum throughput routing problem -- the all-or-nothing multicommodity flow (ANF) problem -- in arbitrary directed graphs and in the practically relevant but challenging setting where demands can be (much) larger than the edge capacities. Hence, in addition to assigning requests to valid flows for each routed commodity, an admission control mechanism is required which prevents overloading the network when routing commodities. We make several contributions. On the theoretical side we obtain substantially improved bi-criteria approximation algorithms for this NP-hard problem. We present two non-trivial linear programming relaxations and show how to convert their fractional solutions into integer solutions via randomized rounding. One is an exponential-size formulation (solvable in polynomial time using a separation oracle) that considers a "packing" view and allows a more flexible approach, while the other is a generalization of the compact LP formulation of Liu et al. (INFOCOM'19) that allows for easy solving via standard LP solvers. We obtain a polynomial-time randomized algorithm that yields an arbitrarily good approximation on the weighted throughput while violating the edge capacity constraints by only a small multiplicative factor. We also describe a deterministic rounding algorithm by derandomization, using the method of pessimistic estimators. We complement our theoretical results with a proof of concept empirical evaluation.
We study the classical expander codes, introduced by Sipser and Spielman \cite{SS96}. Given any constants $0< \alpha, \varepsilon < 1/2$, and an arbitrary bipartite graph with $N$ vertices on the left, $M < N$ vertices on the right, and left degree $D$ such that any left subset $S$ of size at most $\alpha N$ has at least $(1-\varepsilon)|S|D$ neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly $\frac{\alpha N}{2 \varepsilon }$. This is strictly better than the best known previous result of $2(1-\varepsilon ) \alpha N$ \cite{Sudan2000note, Viderman13b} whenever $\varepsilon < 1/2$, and improves the previous result significantly when $\varepsilon $ is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever $\varepsilon < \frac{1}{4}$. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.
We revisit Min-Mean-Cycle, the classical problem of finding a cycle in a weighted directed graph with minimum mean weight. Despite an extensive algorithmic literature, previous work falls short of a near-linear runtime in the number of edges $m$. We propose an approximation algorithm that, for graphs with polylogarithmic diameter, achieves a near-linear runtime. In particular, this is the first algorithm whose runtime scales in the number of vertices $n$ as $\tilde{O}(n^2)$ for the complete graph. Moreover, unconditionally on the diameter, the algorithm uses only $O(n)$ memory beyond reading the input, making it "memory-optimal". Our approach is based on solving a linear programming relaxation using entropic regularization, which reduces the problem to Matrix Balancing -- \'a la the popular reduction of Optimal Transport to Matrix Scaling. The algorithm is practical and simple to implement.
We introduce kernel thinning, a new procedure for compressing a distribution $\mathbb{P}$ more effectively than i.i.d.\ sampling or standard thinning. Given a suitable reproducing kernel $\mathbf{k}$ and $\mathcal{O}(n^2)$ time, kernel thinning compresses an $n$-point approximation to $\mathbb{P}$ into a $\sqrt{n}$-point approximation with comparable worst-case integration error across the associated reproducing kernel Hilbert space. With high probability, the maximum discrepancy in integration error is $\mathcal{O}_d(n^{-1/2}\sqrt{\log n})$ for compactly supported $\mathbb{P}$ and $\mathcal{O}_d(n^{-\frac{1}{2}} (\log n)^{(d+1)/2}\sqrt{\log\log n})$ for sub-exponential $\mathbb{P}$ on $\mathbb{R}^d$. In contrast, an equal-sized i.i.d.\ sample from $\mathbb{P}$ suffers $\Omega(n^{-1/4})$ integration error. Our sub-exponential guarantees resemble the classical quasi-Monte Carlo error rates for uniform $\mathbb{P}$ on $[0,1]^d$ but apply to general distributions on $\mathbb{R}^d$ and a wide range of common kernels. We use our results to derive explicit non-asymptotic maximum mean discrepancy bounds for Gaussian, Mat\'ern, and B-spline kernels and present two vignettes illustrating the practical benefits of kernel thinning over i.i.d.\ sampling and standard Markov chain Monte Carlo thinning, in dimensions $d=2$ through $100$.
This paper studies the expressive power of artificial neural networks (NNs) with rectified linear units. To study them as a model of real-valued computation, we introduce the concept of Max-Affine Arithmetic Programs and show equivalence between them and NNs concerning natural complexity measures. We then use this result to show that two fundamental combinatorial optimization problems can be solved with polynomial-size NNs, which is equivalent to the existence of very special strongly polynomial time algorithms. First, we show that for any undirected graph with $n$ nodes, there is an NN of size $\mathcal{O}(n^3)$ that takes the edge weights as input and computes the value of a minimum spanning tree of the graph. Second, we show that for any directed graph with $n$ nodes and $m$ arcs, there is an NN of size $\mathcal{O}(m^2n^2)$ that takes the arc capacities as input and computes a maximum flow. These results imply in particular that the solutions of the corresponding parametric optimization problems where all edge weights or arc capacities are free parameters can be encoded in polynomial space and evaluated in polynomial time, and that such an encoding is provided by an NN.
Hierarchical Clustering has been studied and used extensively as a method for analysis of data. More recently, Dasgupta [2016] defined a precise objective function. Given a set of $n$ data points with a weight function $w_{i,j}$ for each two items $i$ and $j$ denoting their similarity/dis-similarity, the goal is to build a recursive (tree like) partitioning of the data points (items) into successively smaller clusters. He defined a cost function for a tree $T$ to be $Cost(T) = \sum_{i,j \in [n]} \big(w_{i,j} \times |T_{i,j}| \big)$ where $T_{i,j}$ is the subtree rooted at the least common ancestor of $i$ and $j$ and presented the first approximation algorithm for such clustering. Then Moseley and Wang [2017] considered the dual of Dasgupta's objective function for similarity-based weights and showed that both random partitioning and average linkage have approximation ratio $1/3$ which has been improved in a series of works to $0.585$ [Alon et al. 2020]. Later Cohen-Addad et al. [2019] considered the same objective function as Dasgupta's but for dissimilarity-based metrics, called $Rev(T)$. It is shown that both random partitioning and average linkage have ratio $2/3$ which has been only slightly improved to $0.667078$ [Charikar et al. SODA2020]. Our first main result is to consider $Rev(T)$ and present a more delicate algorithm and careful analysis that achieves approximation $0.71604$. We also introduce a new objective function for dissimilarity-based clustering. For any tree $T$, let $H_{i,j}$ be the number of $i$ and $j$'s common ancestors. Intuitively, items that are similar are expected to remain within the same cluster as deep as possible. So, for dissimilarity-based metrics, we suggest the cost of each tree $T$, which we want to minimize, to be $Cost_H(T) = \sum_{i,j \in [n]} \big(w_{i,j} \times H_{i,j} \big)$. We present a $1.3977$-approximation for this objective.
We study the scheduling problem of makespan minimization while taking machine conflicts into account. Machine conflicts arise in various settings, e.g., shared resources for pre- and post-processing of tasks or spatial restrictions. In this context, each job has a blocking time before and after its processing time, i.e., three parameters. We seek for conflict-free schedules in which the blocking times of no two jobs intersect on conflicting machines. Given a set of jobs, a set of machines, and a graph representing machine conflicts, the problem SchedulingWithMachineConflicts (SMC), asks for a conflict-free schedule of minimum makespan. We show that, unless $\textrm{P}=\textrm{NP}$, SMC on $m$ machines does not allow for a $\mathcal{O}(m^{1-\varepsilon})$-approximation algorithm for any $\varepsilon>0$, even in the case of identical jobs and every choice of fixed positive parameters, including the unit case. Complementary, we provide approximation algorithms when a suitable collection of independent sets is given. Finally, we present polynomial time algorithms to solve the problem for the case of unit jobs on special graph classes. Most prominently, we solve it for bipartite graphs by using structural insights for conflict graphs of star forests.
We revisit the (block-angular) min-max resource sharing problem, which is a well-known generalization of fractional packing and the maximum concurrent flow problem. It consists of finding an $\ell_{\infty}$-minimal element in a Minkowski sum $\mathcal{X}= \sum_{C \in \mathcal{C}} X_C$ of non-empty closed convex sets $X_C \subseteq \mathbb{R}^{\mathcal{R}}_{\geq 0}$, where $\mathcal{C}$ and $\mathcal{R}$ are finite sets. We assume that an oracle for approximate linear minimization over $X_C$ is given. In this setting, the currently fastest known FPTAS is due to M\"uller, Radke, and Vygen. For $\delta \in (0,1]$, it computes a $\sigma(1+\delta)$-approximately optimal solution using $\mathcal{O}((|\mathcal{C}|+|\mathcal{R}|)\log |\mathcal{R}| (\delta^{-2} + \log \log |\mathcal{R}|))$ oracle calls, where $\sigma$ is the approximation ratio of the oracle. We describe an extension of their algorithm and improve on previous results in various ways. Our FPTAS, which, as previous approaches, is based on the multiplicative weight update method, computes close to optimal primal and dual solutions using $\mathcal{O}\left(\frac{|\mathcal{C}|+ |\mathcal{R}|}{\delta^2} \log |\mathcal{R}|\right)$ oracle calls. We prove that our running time is optimal under certain assumptions, implying that no warm-start analysis of the algorithm is possible. A major novelty of our analysis is the concept of local weak duality, which illustrates that the algorithm optimizes (close to) independent parts of the instance separately. Interestingly, this implies that the computed solution is not only approximately $\ell_{\infty}$-minimal, but among such solutions, also its second-highest entry is approximately minimal. We prove that this statement cannot be extended to the third-highest entry.
This paper considers the basic problem of scheduling jobs online with preemption to maximize the number of jobs completed by their deadline on $m$ identical machines. The main result is an $O(1)$ competitive deterministic algorithm for any number of machines $m >1$.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.