亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Bounded Knapsack problem is one of the most fundamental NP-complete problems at the intersection of computer science, optimization, and operations research. A recent line of research worked towards understanding the complexity of pseudopolynomial-time algorithms for Bounded Knapsack parameterized by the maximum item weight $w_{\mathrm{max}}$ and the number of items $n$. A conditional lower bound rules out that Bounded Knapsack can be solved in time $O((n+w_{\mathrm{max}})^{2-\delta})$ for any $\delta > 0$ [Cygan, Mucha, Wegrzycki, Wlodarczyk'17, K\"unnemann, Paturi, Schneider'17]. This raised the question whether Bounded Knapsack can be solved in time $\tilde O((n+w_{\mathrm{max}})^2)$. The quest of resolving this question lead to algorithms that run in time $\tilde O(n^3 w_{\mathrm{max}}^2)$ [Tamir'09], $\tilde O(n^2 w_{\mathrm{max}}^2)$ and $\tilde O(n w_{\mathrm{max}}^3)$ [Bateni, Hajiaghayi, Seddighin, Stein'18], $O(n^2 w_{\mathrm{max}}^2)$ and $\tilde O(n w_{\mathrm{max}}^2)$ [Eisenbrand and Weismantel'18], $O(n + w_{\mathrm{max}}^3)$ [Polak, Rohwedder, Wegrzycki'21], and very recently $\tilde O(n + w_{\mathrm{max}}^{12/5})$ [Chen, Lian, Mao, Zhang'23]. In this paper we resolve this question by designing an algorithm for Bounded Knapsack with running time $\tilde O(n + w_{\mathrm{max}}^2)$, which is conditionally near-optimal.

相關內容

Inferring the parameters of ordinary differential equations (ODEs) from noisy observations is an important problem in many scientific fields. Currently, most parameter estimation methods that bypass numerical integration tend to rely on basis functions or Gaussian processes to approximate the ODE solution and its derivatives. Due to the sensitivity of the ODE solution to its derivatives, these methods can be hindered by estimation error, especially when only sparse time-course observations are available. We present a Bayesian collocation framework that operates on the integrated form of the ODEs and also avoids the expensive use of numerical solvers. Our methodology has the capability to handle general nonlinear ODE systems. We demonstrate the accuracy of the proposed method through simulation studies, where the estimated parameters and recovered system trajectories are compared with other recent methods. A real data example is also provided.

We consider a causal inference model in which individuals interact in a social network and they may not comply with the assigned treatments. In particular, we suppose that the form of network interference is unknown to researchers. To estimate meaningful causal parameters in this situation, we introduce a new concept of exposure mapping, which summarizes potentially complicated spillover effects into a fixed dimensional statistic of instrumental variables. We investigate identification conditions for the intention-to-treat effects and the average treatment effects for compliers, while explicitly considering the possibility of misspecification of exposure mapping. Based on our identification results, we develop nonparametric estimation procedures via inverse probability weighting. Their asymptotic properties, including consistency and asymptotic normality, are investigated using an approximate neighborhood interference framework. For an empirical illustration, we apply our method to experimental data on the anti-conflict intervention school program. The proposed methods are readily available with the companion R package latenetwork.

Most of existing neural methods for multi-objective combinatorial optimization (MOCO) problems solely rely on decomposition, which often leads to repetitive solutions for the respective subproblems, thus a limited Pareto set. Beyond decomposition, we propose a novel neural heuristic with diversity enhancement (NHDE) to produce more Pareto solutions from two perspectives. On the one hand, to hinder duplicated solutions for different subproblems, we propose an indicator-enhanced deep reinforcement learning method to guide the model, and design a heterogeneous graph attention mechanism to capture the relations between the instance graph and the Pareto front graph. On the other hand, to excavate more solutions in the neighborhood of each subproblem, we present a multiple Pareto optima strategy to sample and preserve desirable solutions. Experimental results on classic MOCO problems show that our NHDE is able to generate a Pareto front with higher diversity, thereby achieving superior overall performance. Moreover, our NHDE is generic and can be applied to different neural methods for MOCO.

We study optimal transport (OT) problem for probability measures supported on a tree metric space. It is known that such OT problem (i.e., tree-Wasserstein (TW)) admits a closed-form expression, but depends fundamentally on the underlying tree structure over supports of input measures. In practice, the given tree structure may be, however, perturbed due to noisy or adversarial measurements. In order to mitigate this issue, we follow the max-min robust OT approach which considers the maximal possible distances between two input measures over an uncertainty set of tree metrics. In general, this approach is hard to compute, even for measures supported in $1$-dimensional space, due to its non-convexity and non-smoothness which hinders its practical applications, especially for large-scale settings. In this work, we propose \emph{novel uncertainty sets of tree metrics} from the lens of edge deletion/addition which covers a diversity of tree structures in an elegant framework. Consequently, by building upon the proposed uncertainty sets, and leveraging the tree structure over supports, we show that the max-min robust OT also admits a closed-form expression for a fast computation as its counterpart standard OT (i.e., TW). Furthermore, we demonstrate that the max-min robust OT satisfies the metric property and is negative definite. We then exploit its negative definiteness to propose \emph{positive definite kernels} and test them in several simulations on various real-world datasets on document classification and topological data analysis for measures with noisy tree metric.

Lifelong sequence generation (LSG), a problem in continual learning, aims to continually train a model on a sequence of generation tasks to learn constantly emerging new generation patterns while avoiding the forgetting of previous knowledge. Existing LSG methods mainly focus on maintaining old knowledge while paying little attention to knowledge transfer across tasks. In contrast, humans can better learn new tasks by leveraging previously acquired knowledge from similar tasks. Inspired by the learning paradigm of humans, we propose Dynamic Module Expansion and Adaptation (DMEA), which enables the model to dynamically determine the architecture for acquiring new knowledge based on task correlation and select the most similar previous tasks to facilitate adaptation to new tasks. In addition, as the learning process can easily be biased towards the current task which might cause more severe forgetting of previously learned knowledge, we propose dynamic gradient scaling to balance the learning of the current task and replayed tasks. With extensive experiments, we demonstrate that DMEA can consistently outperform existing methods in different LSG settings.

Among the wide variety of evolutionary computing models, Finite State Machines (FSMs) have several attractions for fundamental research. They are easy to understand in concept and can be visualised clearly in simple cases. They have a ready fitness criterion through their relationship with Regular Languages. They have also been shown to be tractably evolvable, even up to exhibiting evidence of open-ended evolution in specific scenarios. In addition to theoretical attraction, they also have industrial applications, as a paradigm of both automated and user-initiated control. Improving the understanding of the factors affecting FSM evolution has relevance to both computer science and practical optimisation of control. We investigate an evolutionary scenario of FSMs adapting to recognise one of a family of Regular Languages by categorising positive and negative samples, while also being under a counteracting selection pressure that favours fewer states. The results appear to indicate that longer strings provided as samples reduce the speed of fitness gain, when fitness is measured against a fixed number of sample strings. We draw the inference that additional information from longer strings is not sufficient to compensate for sparser coverage of the combinatorial space of positive and negative sample strings.

Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics and AI, with numerous applications in real-world scenarios. One such scenario is filming scenes with multiple actors, where the goal is to capture the scene from multiple angles simultaneously. Here, we present a formation-based filming directive of task assignment followed by a Conflict-Based MAPF algorithm for efficient path planning of multiple agents to achieve filming objectives while avoiding collisions. We propose an extension to the standard MAPF formulation to accommodate actor-specific requirements and constraints. Our approach incorporates Conflict-Based Search, a widely used heuristic search technique for solving MAPF problems. We demonstrate the effectiveness of our approach through experiments on various MAPF scenarios in a simulated environment. The proposed algorithm enables the efficient online task assignment of formation-based filming to capture dynamic scenes, making it suitable for various filming and coverage applications.

Growing literature has shown that NLP systems may encode social biases; however, the political bias of summarization models remains relatively unknown. In this work, we use an entity replacement method to investigate the portrayal of politicians in automatically generated summaries of news articles. We develop an entity-based computational framework to assess the sensitivities of several extractive and abstractive summarizers to the politicians Donald Trump and Joe Biden. We find consistent differences in these summaries upon entity replacement, such as reduced emphasis of Trump's presence in the context of the same article and a more individualistic representation of Trump with respect to the collective US government (i.e., administration). These summary dissimilarities are most prominent when the entity is heavily featured in the source article. Our characterization provides a foundation for future studies of bias in summarization and for normative discussions on the ideal qualities of automatic summaries.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司