亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Objective: Clinical notes contain information not present elsewhere, including drug response and symptoms, all of which are highly important when predicting key outcomes in acute care patients. We propose the automatic annotation of phenotypes from clinical notes as a method to capture essential information, which is complementary to typically used vital signs and laboratory test results, to predict outcomes in the Intensive Care Unit (ICU). Methods: We develop a novel phenotype annotation model to annotate phenotypic features of patients which are then used as input features of predictive models to predict ICU patient outcomes. We demonstrate and validate our approach conducting experiments on three ICU prediction tasks including in-hospital mortality, physiological decompensation and length of stay for over 24,000 patients by using MIMIC-III dataset. Results: The predictive models incorporating phenotypic information achieve 0.845 (AUC-ROC) to predict in-hospital mortality, 0.839 (AUC-ROC) for physiological decompensation and 0.430 (Kappa) for length of stay, all of which consistently outperform the baseline models leveraging only vital signs and laboratory test results. Moreover, we conduct a thorough interpretability study, showing that phenotypes provide valuable insights at the patient and cohort levels. Conclusion: The proposed approach demonstrates phenotypic information complements traditionally used vital signs and laboratory test results, improving significantly forecast of outcomes in the ICU.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Weight · 信息抽取 · 正則化項 · 可辨認的 ·
2022 年 1 月 28 日

The framework of document spanners abstracts the task of information extraction from text as a function that maps every document (a string) into a relation over the document's spans (intervals identified by their start and end indices). For instance, the regular spanners are the closure under the Relational Algebra (RA) of the regular expressions with capture variables, and the expressive power of the regular spanners is precisely captured by the class of VSet-automata -- a restricted class of transducers that mark the endpoints of selected spans. In this work, we embark on the investigation of document spanners that can annotate extractions with auxiliary information such as confidence, support, and confidentiality measures. To this end, we adopt the abstraction of provenance semirings by Green et al., where tuples of a relation are annotated with the elements of a commutative semiring, and where the annotation propagates through the positive RA operators via the semiring operators. Hence, the proposed spanner extension, referred to as an annotator, maps every string into an annotated relation over the spans. As a specific instantiation, we explore weighted VSet-automata that, similarly to weighted automata and transducers, attach semiring elements to transitions. We investigate key aspects of expressiveness, such as the closure under the positive RA, and key aspects of computational complexity, such as the enumeration of annotated answers and their ranked enumeration in the case of ordered semirings. For a number of these problems, fundamental properties of the underlying semiring, such as positivity, are crucial for establishing tractability.

Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline construction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models. The proposed almost-$C^1$ are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on placements or number of extraordinary vertices). They are $C^1$ smooth almost everywhere, that is, at all vertices and across most edges, and in addition almost (i.e. approximately) $C^1$ smooth across all other edges. Thus, the splines form $H^2$-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured spline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several B-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-$C^1$ splines are described in an explicit B\'ezier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned and exhibits optimal approximation behavior.

This paper deals with solving a class of three-by-three block saddle point problems. The systems are solved by preconditioning techniques. Based on an iterative method, we construct a block upper triangular preconditioner. The convergence of the presented method is studied in details. Finally, some numerical experiments are given to demonstrate the superiority of the proposed preconditioner over some existing ones.

We introduce a novel, probabilistic binary latent variable model to detect noisy or approximate repeats of patterns in sparse binary data. The model is based on the "Noisy-OR model" (Heckerman, 1990), used previously for disease and topic modelling. The model's capability is demonstrated by extracting structure in recordings from retinal neurons, but it can be widely applied to discover and model latent structure in noisy binary data. In the context of spiking neural data, the task is to "explain" spikes of individual neurons in terms of groups of neurons, "Cell Assemblies" (CAs), that often fire together, due to mutual interactions or other causes. The model infers sparse activity in a set of binary latent variables, each describing the activity of a cell assembly. When the latent variable of a cell assembly is active, it reduces the probabilities of neurons belonging to this assembly to be inactive. The conditional probability kernels of the latent components are learned from the data in an expectation maximization scheme, involving inference of latent states and parameter adjustments to the model. We thoroughly validate the model on synthesized spike trains constructed to statistically resemble recorded retinal responses to white noise stimulus and natural movie stimulus in data. We also apply our model to spiking responses recorded in retinal ganglion cells (RGCs) during stimulation with a movie and discuss the found structure.

We study the problem of common randomness (CR) generation in the basic two-party communication setting in which the sender and the receiver aim to agree on a common random variable with high probability by observing independent and identically distributed (i.i.d.) samples of correlated Gaussian sources and while communicating as little as possible over a noisy memoryless channel. We completely solve the problem by giving a single-letter characterization of the CR capacity for the proposed model and by providing a rigorous proof of it. Interestingly, we prove that the CR capacity is infinite when the Gaussian sources are perfectly correlated.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

In multi-label text classification, each textual document can be assigned with one or more labels. Due to this nature, the multi-label text classification task is often considered to be more challenging compared to the binary or multi-class text classification problems. As an important task with broad applications in biomedicine such as assigning diagnosis codes, a number of different computational methods (e.g. training and combining binary classifiers for each label) have been proposed in recent years. However, many suffered from modest accuracy and efficiency, with only limited success in practical use. We propose ML-Net, a novel deep learning framework, for multi-label classification of biomedical texts. As an end-to-end system, ML-Net combines a label prediction network with an automated label count prediction mechanism to output an optimal set of labels by leveraging both predicted confidence score of each label and the contextual information in the target document. We evaluate ML-Net on three independent, publicly-available corpora in two kinds of text genres: biomedical literature and clinical notes. For evaluation, example-based measures such as precision, recall and f-measure are used. ML-Net is compared with several competitive machine learning baseline models. Our benchmarking results show that ML-Net compares favorably to the state-of-the-art methods in multi-label classification of biomedical texts. ML-NET is also shown to be robust when evaluated on different text genres in biomedicine. Unlike traditional machine learning methods, ML-Net does not require human efforts in feature engineering and is highly efficient and scalable approach to tasks with a large set of labels (no need to build individual classifiers for each separate label). Finally, ML-NET is able to dynamically estimate the label count based on the document context in a more systematic and accurate manner.

Image segmentation is a fundamental problem in medical image analysis. In recent years, deep neural networks achieve impressive performances on many medical image segmentation tasks by supervised learning on large manually annotated data. However, expert annotations on big medical datasets are tedious, expensive or sometimes unavailable. Weakly supervised learning could reduce the effort for annotation but still required certain amounts of expertise. Recently, deep learning shows a potential to produce more accurate predictions than the original erroneous labels. Inspired by this, we introduce a very weakly supervised learning method, for cystic lesion detection and segmentation in lung CT images, without any manual annotation. Our method works in a self-learning manner, where segmentation generated in previous steps (first by unsupervised segmentation then by neural networks) is used as ground truth for the next level of network learning. Experiments on a cystic lung lesion dataset show that the deep learning could perform better than the initial unsupervised annotation, and progressively improve itself after self-learning.

Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.

北京阿比特科技有限公司