亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conformal predictions make it possible to define reliable and robust learning algorithms. But they are essentially a method for evaluating whether an algorithm is good enough to be used in practice. To define a reliable learning framework for classification from the very beginning of its design, the concept of scalable classifier was introduced to generalize the concept of classical classifier by linking it to statistical order theory and probabilistic learning theory. In this paper, we analyze the similarities between scalable classifiers and conformal predictions by introducing a new definition of a score function and defining a special set of input variables, the conformal safety set, which can identify patterns in the input space that satisfy the error coverage guarantee, i.e., that the probability of observing the wrong (possibly unsafe) label for points belonging to this set is bounded by a predefined $\varepsilon$ error level. We demonstrate the practical implications of this framework through an application in cybersecurity for identifying DNS tunneling attacks. Our work contributes to the development of probabilistically robust and reliable machine learning models.

相關內容

We present a new methodology for utilising machine learning technology in symbolic computation research. We explain how a well known human-designed heuristic to make the choice of variable ordering in cylindrical algebraic decomposition may be represented as a constrained neural network. This allows us to then use machine learning methods to further optimise the heuristic, leading to new networks of similar size, representing new heuristics of similar complexity as the original human-designed one. We present this as a form of ante-hoc explainability for use in computer algebra development.

We study the problem of actively learning a non-parametric choice model based on consumers' decisions. We present a negative result showing that such choice models may not be identifiable. To overcome the identifiability problem, we introduce a directed acyclic graph (DAG) representation of the choice model. This representation provably encodes all the information about the choice model which can be inferred from the available data, in the sense that it permits computing all choice probabilities. We establish that given exact choice probabilities for a collection of item sets, one can reconstruct the DAG. However, attempting to extend this methodology to estimate the DAG from noisy choice frequency data obtained during an active learning process leads to inaccuracies. To address this challenge, we present an inclusion-exclusion approach that effectively manages error propagation across DAG levels, leading to a more accurate estimate of the DAG. Utilizing this technique, our algorithm estimates the DAG representation of an underlying non-parametric choice model. The algorithm operates efficiently (in polynomial time) when the set of frequent rankings is drawn uniformly at random. It learns the distribution over the most popular items among frequent preference types by actively and repeatedly offering assortments of items and observing the chosen item. We demonstrate that our algorithm more effectively recovers a set of frequent preferences on both synthetic and publicly available datasets on consumers' preferences, compared to corresponding non-active learning estimation algorithms. These findings underscore the value of our algorithm and the broader applicability of active-learning approaches in modeling consumer behavior.

Offline reinforcement learning (RL) algorithms are applied to learn performant, well-generalizing policies when provided with a static dataset of interactions. Many recent approaches to offline RL have seen substantial success, but with one key caveat: they demand substantial per-dataset hyperparameter tuning to achieve reported performance, which requires policy rollouts in the environment to evaluate; this can rapidly become cumbersome. Furthermore, substantial tuning requirements can hamper the adoption of these algorithms in practical domains. In this paper, we present TD3 with Behavioral Supervisor Tuning (TD3-BST), an algorithm that trains an uncertainty model and uses it to guide the policy to select actions within the dataset support. TD3-BST can learn more effective policies from offline datasets compared to previous methods and achieves the best performance across challenging benchmarks without requiring per-dataset tuning.

In traditional statistical learning, data points are usually assumed to be independently and identically distributed (i.i.d.) following an unknown probability distribution. This paper presents a contrasting viewpoint, perceiving data points as interconnected and employing a Markov reward process (MRP) for data modeling. We reformulate the typical supervised learning as an on-policy policy evaluation problem within reinforcement learning (RL), introducing a generalized temporal difference (TD) learning algorithm as a resolution. Theoretically, our analysis draws connections between the solutions of linear TD learning and ordinary least squares (OLS). We also show that under specific conditions, particularly when noises are correlated, the TD's solution proves to be a more effective estimator than OLS. Furthermore, we establish the convergence of our generalized TD algorithms under linear function approximation. Empirical studies verify our theoretical results, examine the vital design of our TD algorithm and show practical utility across various datasets, encompassing tasks such as regression and image classification with deep learning.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司