亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The latest assessments of the emerging technologies for reconfigurable intelligent surfaces (RISs) have indicated the concept's significant potential for localization and sensing, either as individual or simultaneously realized tasks. However, in the vast majority of those studies, the RIS state (i.e., its position and rotation angles) is required to be known a priori. In this paper, we address the problem of the joint three-dimensional (3D) localization of a hybrid RIS (HRIS) and a user. The most cost- and power-efficient hybrid version of an RIS is equipped with a single reception radio-frequency chain and meta-atoms capable of simultaneous reconfigurable reflection and sensing. This dual functionality is controlled by adjustable power splitters embedded at each hybrid meta-atom. Focusing on a downlink scenario where a multi-antenna base station transmits multicarrier signals to a user via an HRIS, we propose a multistage approach to jointly estimate the metasurface's 3D position and 3D rotation matrix (i.e., 6D parameter estimation) as well as the user's 3D position. Our simulation results verify the validity of the proposed estimator via extensive comparisons of the root-mean-square error of the state estimations with the Cram\'{e}r-Rao lower bound (CRB), which is analytically derived. Furthermore, it is showcased that there exists an optimal hybrid reconfigurable intelligent surface (HRIS) power splitting ratio for the desired multi-parameter estimation problem. We also study the robustness of the proposed method in the presence of scattering points in the wireless propagation environment.

相關內容

We propose a noble, comprehensive and robust agile requirements change management (ARCM) model that addresses the limitations of existing models and is tailored for agile software development in the global software development paradigm. To achieve this goal, we conducted an exhaustive literature review and an empirical study with RCM industry experts. Our study evaluated the effectiveness of the proposed RCM model in a real-world setting and identifies any limitations or areas for improvement. The results of our study provide valuable insights into how the proposed RCM model can be applied in agile global software development environments to improve software development practices and optimize project success rates.

Artificial intelligence workloads, especially transformer models, exhibit emergent sparsity in which computations perform selective sparse access to dense data. The workloads are inefficient on hardware designed for dense computations and do not map well onto sparse data representations. We build a vectorized and parallel matrix-multiplication system A X B = C that eliminates unnecessary computations and avoids branches based on a runtime evaluation of sparsity. We use a combination of dynamic code lookup to adapt to the specific sparsity encoded in the B matrix and preprocessing of sparsity maps of the A and B matrices to compute conditional branches once for the whole computation. For a wide range of sparsity, from 60% to 95% zeros, our implementation performs fewer instructions and increases performance when compared with Intel MKL's dense or sparse matrix multiply routines. Benefits can be as large as 2 times speedup and 4 times fewer instructions.

This paper develops a networked federated learning algorithm to solve nonsmooth objective functions. To guarantee the confidentiality of the participants with respect to each other and potential eavesdroppers, we use the zero-concentrated differential privacy notion (zCDP). Privacy is achieved by perturbing the outcome of the computation at each client with a variance-decreasing Gaussian noise. ZCDP allows for better accuracy than the conventional $(\epsilon, \delta)$-DP and stronger guarantees than the more recent R\'enyi-DP by assuming adversaries aggregate all the exchanged messages. The proposed algorithm relies on the distributed Alternating Direction Method of Multipliers (ADMM) and uses the approximation of the augmented Lagrangian to handle nonsmooth objective functions. The developed private networked federated learning algorithm has a competitive privacy accuracy trade-off and handles nonsmooth and non-strongly convex problems. We provide complete theoretical proof for the privacy guarantees and the algorithm's convergence to the exact solution. We also prove under additional assumptions that the algorithm converges in $O(1/n)$ ADMM iterations. Finally, we observe the performance of the algorithm in a series of numerical simulations.

Learning highly dynamic behaviors for robots has been a longstanding challenge. Traditional approaches have demonstrated robust locomotion, but the exhibited behaviors lack diversity and agility. They employ approximate models, which lead to compromises in performance. Data-driven approaches have been shown to reproduce agile behaviors of animals, but typically have not been able to learn highly dynamic behaviors. In this paper, we propose a learning-based approach to enable robots to learn highly dynamic behaviors from animal motion data. The learned controller is deployed on a quadrupedal robot and the results show that the controller is able to reproduce highly dynamic behaviors including sprinting, jumping and sharp turning. Various behaviors can be activated through human interaction using a stick with markers attached to it. Based on the motion pattern of the stick, the robot exhibits walking, running, sitting and jumping, much like the way humans interact with a pet.

We propose a new method for autonomous navigation in uneven terrains by utilizing a sparse Gaussian Process (SGP) based local perception model. The SGP local perception model is trained on local ranging observation (pointcloud) to learn the terrain elevation profile and extract the feasible navigation subgoals around the robot. Subsequently, a cost function, which prioritizes the safety of the robot in terms of keeping the robot's roll and pitch angles bounded within a specified range, is used to select a safety-aware subgoal that leads the robot to its final destination. The algorithm is designed to run in real-time and is intensively evaluated in simulation and real world experiments. The results compellingly demonstrate that our proposed algorithm consistently navigates uneven terrains with high efficiency and surpasses the performance of other planners. The code and video can be found here: //rb.gy/3ov2r8

We reveal and address the frequently overlooked yet important issue of disguised procedural unfairness, namely, the potentially inadvertent alterations on the behavior of neutral (i.e., not problematic) aspects of data generating process, and/or the lack of procedural assurance of the greatest benefit of the least advantaged individuals. Inspired by John Rawls's advocacy for pure procedural justice, we view automated decision-making as a microcosm of social institutions, and consider how the data generating process itself can satisfy the requirements of procedural fairness. We propose a framework that decouples the objectionable data generating components from the neutral ones by utilizing reference points and the associated value instantiation rule. Our findings highlight the necessity of preventing disguised procedural unfairness, drawing attention not only to the objectionable data generating components that we aim to mitigate, but also more importantly, to the neutral components that we intend to keep unaffected.

This paper presents a deep learning enhanced adaptive unscented Kalman filter (UKF) for predicting human arm motion in the context of manufacturing. Unlike previous network-based methods that solely rely on captured human motion data, which is represented as bone vectors in this paper, we incorporate a human arm dynamic model into the motion prediction algorithm and use the UKF to iteratively forecast human arm motions. Specifically, a Lagrangian-mechanics-based physical model is employed to correlate arm motions with associated muscle forces. Then a Recurrent Neural Network (RNN) is integrated into the framework to predict future muscle forces, which are transferred back to future arm motions based on the dynamic model. Given the absence of measurement data for future human motions that can be input into the UKF to update the state, we integrate another RNN to directly predict human future motions and treat the prediction as surrogate measurement data fed into the UKF. A noteworthy aspect of this study involves the quantification of uncertainties associated with both the data-driven and physical models in one unified framework. These quantified uncertainties are used to dynamically adapt the measurement and process noises of the UKF over time. This adaption, driven by the uncertainties of the RNN models, addresses inaccuracies stemming from the data-driven model and mitigates discrepancies between the assumed and true physical models, ultimately enhancing the accuracy and robustness of our predictions. Compared to the traditional RNN-based prediction, our method demonstrates improved accuracy and robustness in extensive experimental validations of various types of human motions.

Reconfigurable intelligent surface (RIS)-empowered communication is one of the promising physical layer enabling technologies for the sixth generation (6G) wireless networks due to their unprecedented capabilities in shaping the wireless communication environment. RISs are modeled as passive objects that can not transmit or receive wireless signals. While the passiveness of these surfaces is a key advantage in terms of power consumption and implementation complexity, it limits their capability to interact with the other active components in the network. Specifically, unlike conventional base stations (BSs), which actively identify themselves to user equipment (UEs) by periodically sending pilot signals, RISs need to be detected from the UE side. This paper proposes a novel RIS identification (RIS- ID) scheme, enabling UEs to detect and uniquely identify RISs in their surrounding environment. Furthermore, to assess the proposed RIS-ID scheme, we propose two performance metrics: the false and miss detection probabilities. These probabilities are analytically derived and verified through computer simulations, revealing the effectiveness of the proposed RIS-ID scheme under different operating scenarios.

Generating accurate Structured Querying Language (SQL) is a long-standing problem, especially in matching users' semantic queries with structured databases and then generating structured SQL. Existing models typically input queries and database schemas into the LLM and rely on the LLM to perform semantic-structure matching and generate structured SQL. However, such solutions overlook the structural information within user queries and databases, which can be utilized to enhance the generation of structured SQL. This oversight can lead to inaccurate or unexecutable SQL generation. To fully exploit the structure, we propose a structure-to-SQL framework, which leverages the inherent structure information to improve the SQL generation of LLMs. Specifically, we introduce our Structure Guided SQL~(SGU-SQL) generation model. SGU-SQL first links user queries and databases in a structure-enhanced manner. It then decomposes complicated linked structures with grammar trees to guide the LLM to generate the SQL step by step. Extensive experiments on two benchmark datasets illustrate that SGU-SQL can outperform sixteen SQL generation baselines.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司