亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper an analytical model is introduced to describe the impulse response of the diffusive channel between a pointwise transmitter and a given fully-absorbing (FA) receiver in a molecular communication (MC) system. The presence of neighbouring FA nanomachines in the environment is taken into account by describing them as sources of negative molecules. The channel impulse responses of all the receivers are linked in a system of integral equations. The solution of the system with two receivers is obtained analytically. For a higher number of receivers the system of integral equations is solved numerically. It is also shown that the channel impulse response shape is distorted by the presence of the interferers. For instance, there is a time shift of the peak in the number of absorbed molecules compared to the case without interference, as predicted by the proposed model. The analytical derivations are validated by means of particle based simulations.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成(cheng),VLSI雜志。 Publisher:Elsevier。 SIT: 

Modern wireless cellular networks use massive multiple-input multiple-output (MIMO) technology. This technology involves operations with an antenna array at a base station that simultaneously serves multiple mobile devices which also use multiple antennas on their side. For this, various precoding and detection techniques are used, allowing each user to receive the signal intended for him from the base station. There is an important class of linear precoding called Regularized Zero-Forcing (RZF). In this work, we propose Adaptive RZF (ARZF) with a special kind of regularization matrix with different coefficients for each layer of multi-antenna users. These regularization coefficients are defined by explicit formulas based on SVD decompositions of user channel matrices. We study the optimization problem, which is solved by the proposed algorithm, with the connection to other possible problem statements. We also compare the proposed algorithm with state-of-the-art linear precoding algorithms on simulations with the Quadriga channel model. The proposed approach provides a significant increase in quality with the same computation time as in the reference methods.

In many real-world settings, only incomplete measurement data are available which can pose a problem for learning. Unsupervised learning of the signal model using a fixed incomplete measurement process is impossible in general, as there is no information in the nullspace of the measurement operator. This limitation can be overcome by using measurements from multiple operators. While this idea has been successfully applied in various applications, a precise characterization of the conditions for learning is still lacking. In this paper, we fill this gap by presenting necessary and sufficient conditions for learning the signal model which indicate the interplay between the number of distinct measurement operators $G$, the number of measurements per operator $m$, the dimension of the model $k$ and the dimension of the signals $n$. In particular, we show that generically unsupervised learning is possible if each operator obtains at least $m>k+n/G$ measurements. Our results are agnostic of the learning algorithm and have implications in a wide range of practical algorithms, from low-rank matrix recovery to deep neural networks.

We study private classical communication over quantum multiple-access channels. For an arbitrary number of transmitters, we derive a regularized expression of the capacity region. In the case of degradable channels, we establish a single-letter expression for the best achievable sum-rate and prove that this quantity also corresponds to the best achievable sum-rate for quantum communication over degradable quantum multiple-access channels. In our achievability result, we decouple the reliability and privacy constraints, which are handled via source coding with quantum side information and universal hashing, respectively. Hence, we also establish that the multi-user coding problem under consideration can be handled solely via point-to-point coding techniques. As a by-product of independent interest, we derive a distributed leftover hash lemma against quantum side information that ensures privacy in our achievability result.

We propose a secure voting protocol for score-based voting rules, where independent talliers perform the tallying procedure. The protocol outputs the winning candidate(s) while preserving the privacy of the voters and the secrecy of the ballots. It offers perfect secrecy, in the sense that apart from the desired output, all other information -- the ballots, intermediate values, and the final scores received by each of the candidates -- is not disclosed to any party, including the talliers. Such perfect secrecy may increase the voters' confidence and, consequently, encourage them to vote according to their true preferences. The protocol is extremely lightweight, and therefore it can be easily deployed in real-life voting scenarios.

Recently Reinforcement Learning (RL) has been applied as an anti-adversarial remedy in wireless communication networks. However, studying the RL-based approaches from the adversary's perspective has received little attention. Additionally, RL-based approaches in an anti-adversary or adversarial paradigm mostly consider single-channel communication (either channel selection or single channel power control), while multi-channel communication is more common in practice. In this paper, we propose a multi-agent adversary system (MAAS) for modeling and analyzing adversaries in a wireless communication scenario by careful design of the reward function under realistic communication scenarios. In particular, by modeling the adversaries as learning agents, we show that the proposed MAAS is able to successfully choose the transmitted channel(s) and their respective allocated power(s) without any prior knowledge of the sender strategy. Compared to the single-agent adversary (SAA), multi-agents in MAAS can achieve significant reduction in signal-to-noise ratio (SINR) under the same power constraints and partial observability, while providing improved stability and a more efficient learning process. Moreover, through empirical studies we show that the results in simulation are close to the ones in communication in reality, a conclusion that is pivotal to the validity of performance of agents evaluated in simulations.

In [1], the impulse response of the first arrival position (FAP) channel of 2D and 3D spaces in molecular communication (MC) is derived, but its Shannon capacity remains open. The main difficulty of depicting the FAP channel capacity comes from the fact that the FAP density becomes a multi-dimensional Cauchy distribution when the drift velocity approaches zero. As a result, the commonly used techniques in maximizing the mutual information no longer work because the first and second moments of Cauchy distributions do not exist. Our main contribution in this paper is a complete characterization of the zero-drift FAP channel capacity for the 2D and 3D spaces. The capacity formula for FAP channel turns out to have a similar form compared to the Gaussian channel case (under second-moment power constraint). It is also worth mentioning that the capacity value of 3D FAP channel is twice as large as 2D FAP channel. This is an evidence that the FAP channel has larger capacity as the spatial dimension grows. Finally, our technical contributions are the application of a modified logarithmic constraint as a replacement of the usual power constraint, and the choice of output signal constraint as a substitution to input signal constraint in order to keep the resulting formula concise.

Iterative distributed optimization algorithms involve multiple agents that communicate with each other, over time, in order to minimize/maximize a global objective. In the presence of unreliable communication networks, the Age-of-Information (AoI), which measures the freshness of data received, may be large and hence hinder algorithmic convergence. In this paper, we study the convergence of general distributed gradient-based optimization algorithms in the presence of communication that neither happens periodically nor at stochastically independent points in time. We show that convergence is guaranteed provided the random variables associated with the AoI processes are stochastically dominated by a random variable with finite first moment. This improves on previous requirements of boundedness of more than the first moment. We then introduce stochastically strongly connected (SSC) networks, a new stochastic form of strong connectedness for time-varying networks. We show: If for any $p \ge0$ the processes that describe the success of communication between agents in a SSC network are $\alpha$-mixing with $n^{p-1}\alpha(n)$ summable, then the associated AoI processes are stochastically dominated by a random variable with finite $p$-th moment. In combination with our first contribution, this implies that distributed stochastic gradient descend converges in the presence of AoI, if $\alpha(n)$ is summable.

The interconnection of vehicles in the future fifth generation (5G) wireless ecosystem forms the so-called Internet of vehicles (IoV). IoV offers new kinds of applications requiring delay-sensitive, compute-intensive and bandwidth-hungry services. Mobile edge computing (MEC) and network slicing (NS) are two of the key enabler technologies in 5G networks that can be used to optimize the allocation of the network resources and guarantee the diverse requirements of IoV applications. As traditional model-based optimization techniques generally end up with NP-hard and strongly non-convex and non-linear mathematical programming formulations, in this paper, we introduce a model-free approach based on deep reinforcement learning (DRL) to solve the resource allocation problem in MEC-enabled IoV network based on network slicing. Furthermore, the solution uses non-orthogonal multiple access (NOMA) to enable a better exploitation of the scarce channel resources. The considered problem addresses jointly the channel and power allocation, the slice selection and the vehicles selection (vehicles grouping). We model the problem as a single-agent Markov decision process. Then, we solve it using DRL using the well-known DQL algorithm. We show that our approach is robust and effective under different network conditions compared to benchmark solutions.

We propose an interactive 3D character modeling approach from orthographic drawings (e.g., front and side views) based on 2D-space annotations. First, the system builds partial correspondences between the input drawings and generates a base mesh with sweeping splines according to edge information in 2D images. Next, users annotates the desired parts on the input drawings (e.g., the eyes and mouth) by using two type of strokes, called addition and erosion, and the system re-optimizes the shape of the base mesh. By repeating the 2D-space operations (i.e., revising and modifying the annotations), users can design a desired character model. To validate the efficiency and quality of our system, we verified the generated results with state-of-the-art methods.

Diffusion-based inpainting is a powerful tool for the reconstruction of images from sparse data. Its quality strongly depends on the choice of known data. Optimising their spatial location -- the inpainting mask -- is challenging. A commonly used tool for this task are stochastic optimisation strategies. However, they are slow as they compute multiple inpainting results. We provide a remedy in terms of a learned mask generation model. By emulating the complete inpainting pipeline with two networks for mask generation and neural surrogate inpainting, we obtain a model for highly efficient adaptive mask generation. Experiments indicate that our model can achieve competitive quality with an acceleration by as much as four orders of magnitude. Our findings serve as a basis for making diffusion-based inpainting more attractive for applications such as image compression, where fast encoding is highly desirable.

北京阿比特科技有限公司