亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Polarization, declining trust, and wavering support for democratic norms are pressing threats to U.S. democracy. Exposure to verified and quality news may lower individual susceptibility to these threats and make citizens more resilient to misinformation, populism, and hyperpartisan rhetoric. This project examines how to enhance users' exposure to and engagement with verified and ideologically balanced news in an ecologically valid setting. We rely on a large-scale two-week long field experiment (from 1/19/2023 to 2/3/2023) on 28,457 Twitter users. We created 28 bots utilizing GPT-2 that replied to users tweeting about sports, entertainment, or lifestyle with a contextual reply containing two hardcoded elements: a URL to the topic-relevant section of quality news organization and an encouragement to follow its Twitter account. To further test differential effects by gender of the bots, treated users were randomly assigned to receive responses by bots presented as female or male. We examine whether our over-time intervention enhances the following of news media organization, the sharing and the liking of news content and the tweeting about politics and the liking of political content. We find that the treated users followed more news accounts and the users in the female bot treatment were more likely to like news content than the control. Most of these results, however, were small in magnitude and confined to the already politically interested Twitter users, as indicated by their pre-treatment tweeting about politics. These findings have implications for social media and news organizations, and also offer direction for future work on how Large Language Models and other computational interventions can effectively enhance individual on-platform engagement with quality news and public affairs.

相關內容

The commonly used caching policies, such as LRU or LFU, exhibit optimal performance only for specific traffic patterns. Even advanced Machine Learning-based methods, which detect patterns in historical request data, struggle when future requests deviate from past trends. Recently, a new class of policies has emerged that makes no assumptions about the request arrival process. These algorithms solve an online optimization problem, enabling continuous adaptation to the context. They offer theoretical guarantees on the regret metric, which is the gap between the gain of the online policy and the gain of the optimal static cache allocation in hindsight. Nevertheless, the high computational complexity of these solutions hinders their practical adoption. In this study, we introduce a groundbreaking gradient-based online caching policy, the first to achieve logarithmic computational complexity relative to catalog size along with regret guarantees. This means our algorithm can efficiently handle large-scale data while minimizing the performance gap between real-time decisions and optimal hindsight choices. As requests arrive, our policy dynamically adjusts the probabilities of including items in the cache, which drive cache update decisions. Our algorithm's streamlined complexity is a key advantage, enabling its application to real-world traces featuring millions of requests and items. This is a significant achievement, as traces of this scale have been out of reach for existing policies with regret guarantees. To the best of our knowledge, our experimental results show for the first time that the regret guarantees of gradient-based caching policies bring significant benefits in scenarios of practical interest.

There are two paradigms in Federated Learning (FL): parallel FL (PFL), where models are trained in a parallel manner across clients; and sequential FL (SFL), where models are trained in a sequential manner across clients. In contrast to that of PFL, the convergence theory of SFL on heterogeneous data is still lacking. To resolve the theoretical dilemma of SFL, we establish sharp convergence guarantees for SFL on heterogeneous data with both upper and lower bounds. Specifically, we derive the upper bounds for strongly convex, general convex and non-convex objective functions, and construct the matching lower bounds for the strongly convex and general convex objective functions. Then, we compare the upper bounds of SFL with those of PFL, showing that SFL outperforms PFL (at least, when the level of heterogeneity is relatively high). Experimental results on quadratic functions and real data sets validate the counterintuitive comparison result.

Future wireless networks, in particular, 5G and beyond, are anticipated to deploy dense Low Earth Orbit (LEO) satellites to provide global coverage and broadband connectivity. However, the limited frequency band and the coexistence of multiple constellations bring new challenges for interference management. In this paper, we propose a robust multilayer interference management scheme for spectrum sharing in heterogeneous satellite networks with statistical channel state information (CSI) at the transmitter (CSIT) and receivers (CSIR). In the proposed scheme, Rate-Splitting Multiple Access (RSMA), as a general and powerful framework for interference management and multiple access strategies, is implemented distributedly at GEO and LEO satellites, coined Distributed-RSMA (D-RSMA). By doing so, D-RSMA aims to mitigate the interference and boost the user fairness of the overall multilayer satellite system. Specifically, we study the problem of jointly optimizing the GEO/LEO precoders and message splits to maximize the minimum rate among User Terminals (UTs) subject to a transmit power constraint at all satellites. A robust algorithm is proposed to solve the original non-convex optimization problem. Numerical results demonstrate the effectiveness and robustness towards network load and CSI uncertainty of our proposed D-RSMA scheme. Benefiting from the interference management capability, D-RSMA provides significant max-min fairness performance gains compared to several benchmark schemes.

Heart diseases are the main international cause of human defunction. According to the WHO, nearly 18 million people decease each year because of heart diseases. Also considering the increase of medical data, much pressure is put on the health industry to develop systems for early and accurate heart disease recognition. In this work, an automatic cardiac pathology recognition system based on a novel deep learning framework is proposed, which analyses in real-time echocardiography video sequences. The system works in two stages. The first one transforms the data included in a database of echocardiography sequences into a machine-learning-compatible collection of annotated images which can be used in the training stage of any kind of machine learning-based framework, and more specifically with deep learning. This includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm, for the first time to the authors' knowledge, for both data augmentation and feature extraction in the medical field. The second stage is focused on building and training a Vision Transformer (ViT), barely explored in the related literature. The ViT is adapted for an effective training from scratch, even with small datasets. The designed neural network analyses images from an echocardiography sequence to predict the heart state. The results obtained show the superiority of the proposed system and the efficacy of the HODMD algorithm, even outperforming pretrained Convolutional Neural Networks (CNNs), which are so far the method of choice in the literature.

Depthwise and pointwise convolutions have fewer parameters and perform fewer operations than standard convolutions. As a result, they have become increasingly used in various compact DNNs, including convolutional neural networks (CNNs) and vision transformers (ViTs). However, they have a lower compute-to-memory-access ratio than standard convolutions, making their memory accesses often the performance bottleneck. This paper explores fusing depthwise and pointwise convolutions to overcome the memory access bottleneck. The focus is on fusing these operators on GPUs. The prior art on GPU-based fusion suffers from one or more of the following: (1) fusing either a convolution with an element-wise or multiple non-convolutional operators, (2) not explicitly optimizing for memory accesses, (3) not supporting depthwise convolutions. This paper proposes Fused Convolutional Modules (FCMs), a set of novel fused depthwise and pointwise GPU kernels. FCMs significantly reduce pointwise and depthwise convolutions memory accesses, improving execution time and energy efficiency. To evaluate the trade-offs associated with fusion and determine which convolutions are beneficial to fuse and the optimal FCM parameters, we propose FusePlanner. FusePlanner consists of cost models to estimate the memory accesses of depthwise, pointwise, and FCM kernels given GPU characteristics. Our experiments on three GPUs using representative CNNs and ViTs demonstrate that FCMs save up to 83% of the memory accesses and achieve speedups of up to 3.7x compared to cuDNN. Complete model implementations of various CNNs using our modules outperform TVMs' achieving speedups of up to 1.8x and saving up to two-thirds of the energy.

With wearing masks becoming a new cultural norm, facial expression recognition (FER) while taking masks into account has become a significant challenge. In this paper, we propose a unified multi-branch vision transformer for facial expression recognition and mask wearing classification tasks. Our approach extracts shared features for both tasks using a dual-branch architecture that obtains multi-scale feature representations. Furthermore, we propose a cross-task fusion phase that processes tokens for each task with separate branches, while exchanging information using a cross attention module. Our proposed framework reduces the overall complexity compared with using separate networks for both tasks by the simple yet effective cross-task fusion phase. Extensive experiments demonstrate that our proposed model performs better than or on par with different state-of-the-art methods on both facial expression recognition and facial mask wearing classification task.

The growth of social networks makes toxic content spread rapidly. Hate speech detection is a task to help decrease the number of harmful comments. With the diversity in the hate speech created by users, it is necessary to interpret the hate speech besides detecting it. Hence, we propose a methodology to construct a system for targeted hate speech detection from online streaming texts from social media. We first introduce the ViTHSD - a targeted hate speech detection dataset for Vietnamese Social Media Texts. The dataset contains 10K comments, each comment is labeled to specific targets with three levels: clean, offensive, and hate. There are 5 targets in the dataset, and each target is labeled with the corresponding level manually by humans with strict annotation guidelines. The inter-annotator agreement obtained from the dataset is 0.45 by Cohen's Kappa index, which is indicated as a moderate level. Then, we construct a baseline for this task by combining the Bi-GRU-LSTM-CNN with the pre-trained language model to leverage the power of text representation of BERTology. Finally, we suggest a methodology to integrate the baseline model for targeted hate speech detection into the online streaming system for practical application in preventing hateful and offensive content on social media.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司