亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inverse source problems arise often in real-world applications, such as localizing unknown groundwater contaminant sources. Being different from Tikhonov regularization, the quasi-boundary value method has been proposed and analyzed as an effective way for regularizing such inverse source problems, which was shown to achieve an optimal order convergence rate under suitable assumptions. However, fast direct or iterative solvers for the resulting all-at-once large-scale linear systems have been rarely studied in the literature. In this work, we first proposed and analyzed a modified quasi-boundary value method, and then developed a diagonalization-based parallel-in-time (PinT) direct solver, which can achieve a dramatic speedup in CPU times when compared with MATLAB's sparse direct solver. In particular, the time-discretization matrix $B$ is shown to be diagonalizable, and the condition number of its eigenvector matrix $V$ is proven to exhibit quadratic growth, which guarantees the roundoff errors due to diagonalization is well controlled. Several 1D and 2D examples are presented to demonstrate the very promising computational efficiency of our proposed method, where the CPU times in 2D cases can be speedup by three orders of magnitude.

相關內容

In this paper we present an algebraic dimension-oblivious two-level domain decomposition solver for discretizations of elliptic partial differential equations. The proposed parallel solver is based on a space-filling curve partitioning approach that is applicable to any discretization, i.e. it directly operates on the assembled matrix equations. Moreover, it allows for the effective use of arbitrary processor numbers independent of the dimension of the underlying partial differential equation while maintaining optimal convergence behavior. This is the core property required to attain a sparse grid based combination method with extreme scalability which can utilize exascale parallel systems efficiently. Moreover, this approach provides a basis for the development of a fault-tolerant solver for the numerical treatment of high-dimensional problems. To achieve the required data redundancy we are therefore concerned with large overlaps of our domain decomposition which we construct via space-filling curves. In this paper, we propose our space-filling curve based domain decomposition solver and present its convergence properties and scaling behavior. The results of numerical experiments clearly show that our approach provides optimal convergence and scaling behavior in arbitrary dimension utilizing arbitrary processor numbers.

Continuous-time (CT) models have shown an improved sample efficiency during learning and enable ODE analysis methods for enhanced interpretability compared to discrete-time (DT) models. Even with numerous recent developments, the multifaceted CT state-space model identification problem remains to be solved in full, considering common experimental aspects such as the presence of external inputs, measurement noise, and latent states. This paper presents a novel estimation method that includes these aspects and that is able to obtain state-of-the-art results on multiple benchmarks where a small fully connected neural network describes the CT dynamics. The novel estimation method called the subspace encoder approach ascertains these results by altering the well-known simulation loss to include short subsections instead, by using an encoder function and a state-derivative normalization term to obtain a computationally feasible and stable optimization problem. This encoder function estimates the initial states of each considered subsection. We prove that the existence of the encoder function has the necessary condition of a Lipschitz continuous state-derivative utilizing established properties of ODEs.

The stochastic nature of iterative optimization heuristics leads to inherently noisy performance measurements. Since these measurements are often gathered once and then used repeatedly, the number of collected samples will have a significant impact on the reliability of algorithm comparisons. We show that care should be taken when making decisions based on limited data. Particularly, we show that the number of runs used in many benchmarking studies, e.g., the default value of 15 suggested by the COCO environment, can be insufficient to reliably rank algorithms on well-known numerical optimization benchmarks. Additionally, methods for automated algorithm configuration are sensitive to insufficient sample sizes. This may result in the configurator choosing a `lucky' but poor-performing configuration despite exploring better ones. We show that relying on mean performance values, as many configurators do, can require a large number of runs to provide accurate comparisons between the considered configurations. Common statistical tests can greatly improve the situation in most cases but not always. We show examples of performance losses of more than 20%, even when using statistical races to dynamically adjust the number of runs, as done by irace. Our results underline the importance of appropriately considering the statistical distribution of performance values.

Deep neural networks have seen tremendous success over the last years. Since the training is performed on digital hardware, in this paper, we analyze what actually can be computed on current hardware platforms modeled as Turing machines, which would lead to inherent restrictions of deep learning. For this, we focus on the class of inverse problems, which, in particular, encompasses any task to reconstruct data from measurements. We prove that finite-dimensional inverse problems are not Banach-Mazur computable for small relaxation parameters. In fact, our result even holds for Borel-Turing computability., i.e., there does not exist an algorithm which performs the training of a neural network on digital hardware for any given accuracy. This establishes a conceptual barrier on the capabilities of neural networks for finite-dimensional inverse problems given that the computations are performed on digital hardware.

Numerical solution of heterogeneous Helmholtz problems presents various computational challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness and scalability are key for practical and reliable solvers in large-scale applications, especially for large wave number problems. In this work we explore the use of a GenEO-type coarse space to build a two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free meshes, we observe robust convergence, iteration counts that do not increase with the wave number, and good scalability of our approach. We further provide results showing a favourable comparison with the DtN coarse space. Our numerical study shows promise that our solver methodology can be effective for challenging heterogeneous applications.

In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.

Works on quantum computing and cryptanalysis has increased significantly in the past few years. Various constructions of quantum arithmetic circuits, as one of the essential components in the field, has also been proposed. However, there has only been a few studies on finite field inversion despite its essential use in realizing quantum algorithms, such as in Shor's algorithm for Elliptic Curve Discrete Logarith Problem (ECDLP). In this study, we propose to reduce the depth of the existing quantum Fermat's Little Theorem (FLT)-based inversion circuit for binary finite field. In particular, we propose follow a complete waterfall approach to translate the Itoh-Tsujii's variant of FLT to the corresponding quantum circuit and remove the inverse squaring operations employed in the previous work by Banegas et al., lowering the number of CNOT gates (CNOT count), which contributes to reduced overall depth and gate count. Furthermore, compare the cost by firstly constructing our method and previous work's in Qiskit quantum computer simulator and perform the resource analysis. Our approach can serve as an alternative for a time-efficient implementation.

We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.

We present a new approach for efficient exploration which leverages a low-dimensional encoding of the environment learned with a combination of model-based and model-free objectives. Our approach uses intrinsic rewards that are based on the distance of nearest neighbors in the low dimensional representational space to gauge novelty. We then leverage these intrinsic rewards for sample-efficient exploration with planning routines in representational space for hard exploration tasks with sparse rewards. One key element of our approach is the use of information theoretic principles to shape our representations in a way so that our novelty reward goes beyond pixel similarity. We test our approach on a number of maze tasks, as well as a control problem and show that our exploration approach is more sample-efficient compared to strong baselines.

The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of $\delta$-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases $\delta$-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.

北京阿比特科技有限公司