We propose a new transformer model for the Traveling Salesman Problem (TSP) called CycleFormer. We identified distinctive characteristics that need to be considered when applying a conventional transformer model to TSP and aimed to fully incorporate these elements into the TSP-specific transformer. Unlike the token sets in typical language models, which are limited and static, the token (node) set in TSP is unlimited and dynamic. To exploit this fact to the fullest, we equated the encoder output with the decoder linear layer and directly connected the context vector of the encoder to the decoder encoding. Additionally, we added a positional encoding to the encoder tokens that reflects the two-dimensional nature of TSP, and devised a circular positional encoding for the decoder tokens that considers the cyclic properties of a tour. By incorporating these ideas, CycleFormer outperforms state-of-the-art (SOTA) transformer models for TSP from TSP-50 to TSP-500. Notably, on TSP-500, the optimality gap was reduced by approximately 2.8 times, from 3.09% to 1.10%, compared to the existing SOTA. The code will be made available at //github.com/Giventicket/CycleFormer.
Typical schemes for automated red-teaming large language models (LLMs) focus on discovering prompts that trigger a frozen language model (the defender) to generate toxic text. This often results in the prompting model (the adversary) producing text that is unintelligible and unlikely to arise. Here, we propose a reinforcement learning formulation of the LLM red-teaming task which allows us to discover prompts that both (1) trigger toxic outputs from a frozen defender and (2) have low perplexity as scored by the defender. We argue these cases are most pertinent in a red-teaming setting because of their likelihood to arise during normal use of the defender model. We solve this formulation through a novel online and weakly supervised variant of Identity Preference Optimization (IPO) on GPT-2 and GPT-2 XL defenders. We demonstrate that our policy is capable of generating likely prompts that also trigger toxicity. Finally, we qualitatively analyze learned strategies, trade-offs of likelihood and toxicity, and discuss implications. Source code is available for this project at: //github.com/sisl/ASTPrompter/.
Utilizing Vision-Language Models (VLMs) for robotic manipulation represents a novel paradigm, aiming to enhance the model's ability to generalize to new objects and instructions. However, due to variations in camera specifications and mounting positions, existing methods exhibit significant performance disparities across different robotic platforms. To address this challenge, we propose RoboUniView in this paper, an innovative approach that decouples visual feature extraction from action learning. We first learn a unified view representation from multi-perspective views by pre-training on readily accessible data, and then derive actions from this unified view representation to control robotic manipulation. This unified view representation more accurately mirrors the physical world and is not constrained by the robotic platform's camera parameters. Thanks to this methodology, we achieve state-of-the-art performance on the demanding CALVIN benchmark, enhancing the success rate in the $D \to D$ setting from 93.0% to 96.2%, and in the $ABC \to D$ setting from 92.2% to 94.2%. Moreover, our model exhibits outstanding adaptability and flexibility: it maintains high performance under unseen camera parameters, can utilize multiple datasets with varying camera parameters, and is capable of joint cross-task learning across datasets. Code is provided for re-implementation. //github.com/liufanfanlff/RoboUniview
Neural Architecture Search (NAS) for Federated Learning (FL) is an emerging field. It automates the design and training of Deep Neural Networks (DNNs) when data cannot be centralized due to privacy, communication costs, or regulatory restrictions. Recent federated NAS methods not only reduce manual effort but also help achieve higher accuracy than traditional FL methods like FedAvg. Despite the success, existing federated NAS methods still fall short in satisfying diverse deployment targets common in on-device inference like hardware, latency budgets, or variable battery levels. Most federated NAS methods search for only a limited range of neuro-architectural patterns, repeat them in a DNN, thereby restricting achievable performance. Moreover, these methods incur prohibitive training costs to satisfy deployment targets. They perform the training and search of DNN architectures repeatedly for each case. SuperFedNAS addresses these challenges by decoupling the training and search in federated NAS. SuperFedNAS co-trains a large number of diverse DNN architectures contained inside one supernet in the FL setting. Post-training, clients perform NAS locally to find specialized DNNs by extracting different parts of the trained supernet with no additional training. SuperFedNAS takes O(1) (instead of O(N)) cost to find specialized DNN architectures in FL for any N deployment targets. As part of SuperFedNAS, we introduce MaxNet - a novel FL training algorithm that performs multi-objective federated optimization of a large number of DNN architectures ($\approx 5*10^8$) under different client data distributions. Overall, SuperFedNAS achieves upto 37.7% higher accuracy for the same MACs or upto 8.13x reduction in MACs for the same accuracy than existing federated NAS methods.
Model training requires significantly more memory, compared with inference. Parameter efficient fine-tuning (PEFT) methods provide a means of adapting large models to downstream tasks using less memory. However, existing methods such as adapters, prompt tuning or low-rank adaptation (LoRA) either introduce latency overhead at inference time or achieve subpar downstream performance compared with full fine-tuning. In this work we propose Random Subspace Adaptation (ROSA), a method that outperforms previous PEFT methods by a significant margin, while maintaining a zero latency overhead during inference time. In contrast to previous methods, ROSA is able to adapt subspaces of arbitrarily large dimension, better approximating full-finetuning. We demonstrate both theoretically and experimentally that this makes ROSA strictly more expressive than LoRA, without consuming additional memory during runtime. As PEFT methods are especially useful in the natural language processing domain, where models operate on scales that make full fine-tuning very expensive, we evaluate ROSA in two common NLP scenarios: natural language generation (NLG) and natural language understanding (NLU) with GPT-2 and RoBERTa, respectively. We show that on almost every GLUE task ROSA outperforms LoRA by a significant margin, while also outperforming LoRA on NLG tasks. Our code is available at //github.com/rosa-paper/rosa
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow. Despite this reality, existing restoration methods typically target isolated degradation types, thereby falling short in environments where multiple degrading factors coexist. To bridge this gap, our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios. In this context, we propose OneRestore, a novel transformer-based framework designed for adaptive, controllable scene restoration. The proposed framework leverages a unique cross-attention mechanism, merging degraded scene descriptors with image features, allowing for nuanced restoration. Our model allows versatile input scene descriptors, ranging from manual text embeddings to automatic extractions based on visual attributes. Our methodology is further enhanced through a composite degradation restoration loss, using extra degraded images as negative samples to fortify model constraints. Comparative results on synthetic and real-world datasets demonstrate OneRestore as a superior solution, significantly advancing the state-of-the-art in addressing complex, composite degradations.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.