The Oven Scheduling Problem (OSP) is an NP-hard real-world parallel batch scheduling problem arising in the semiconductor industry. The objective of the problem is to schedule a set of jobs on ovens while minimizing several factors, namely total oven runtime, job tardiness, and setup costs. At the same time, it must adhere to various constraints such as oven eligibility and availability, job release dates, setup times between batches, and oven capacity limitations. The key to obtaining efficient schedules is to process compatible jobs simultaneously in batches. In this paper, we develop theoretical, problem-specific lower bounds for the OSP that can be computed very quickly. We thoroughly examine these lower bounds, evaluating their quality and exploring their integration into existing solution methods. Specifically, we investigate their contribution to exact methods and a metaheuristic local search approach using simulated annealing. Moreover, these problem-specific lower bounds enable us to assess the solution quality for large instances for which exact methods often fail to provide tight lower bounds.
Recent trends like the Internet of Things (IoT) suggest a vision of dense and multi-scale deployments of computing devices in nearly all kinds of environments. A prominent engineering challenge revolves around programming the collective adaptive behaviour of such computational ecosystems. This requires abstractions able to capture concepts like ensembles (dynamic groups of cooperating devices) and collective tasks (joint activities carried out by ensembles). In this work, we consider collections of devices interacting with neighbours and that execute in nearly-synchronised sense-compute-interact rounds, where the computation is given by a single program mapping sensing values and incoming messages to output and outcoming messages. To support programming whole computational collectives, we propose the abstraction of a distributed collective process, which can be used to define at once the ensemble formation logic and its collective task. We formalise the abstraction in the eXchange Calculus (XC), a core functional language based on neighbouring values (maps from neighbours to values) where state and interaction is handled through a single primitive, exchange, and provide a corresponding implementation in the FCPP language. Then, we exercise distributed collective processes using two case studies: multi-hop message propagation and distributed monitoring of spatial properties. Finally, we discuss the features of the abstraction and its suitability for different kinds of distributed computing applications.
We present a technique and benchmark dataset for estimating the relative 3D orientation between a pair of Internet images captured in an extreme setting, where the images have limited or non-overlapping field of views. Prior work targeting extreme rotation estimation assume constrained 3D environments and emulate perspective images by cropping regions from panoramic views. However, real images captured in the wild are highly diverse, exhibiting variation in both appearance and camera intrinsics. In this work, we propose a Transformer-based method for estimating relative rotations in extreme real-world settings, and contribute the ExtremeLandmarkPairs dataset, assembled from scene-level Internet photo collections. Our evaluation demonstrates that our approach succeeds in estimating the relative rotations in a wide variety of extremeview Internet image pairs, outperforming various baselines, including dedicated rotation estimation techniques and contemporary 3D reconstruction methods.
Autonomous reconfigurable intelligent surface (RIS) offers the potential to simplify deployment by reducing the need for real-time remote control between a base station (BS) and an RIS. However, we highlight two major challenges posed by autonomy. The first is implementation complexity, as autonomy requires hybrid RISs (HRISs) equipped with additional on-board hardware to monitor the propagation environment and conduct local channel estimation (CHEST), a process known as probing. The second challenge, termed probe distortion, reflects a form of the observer effect: during probing, an HRIS can inadvertently alter the propagation environment, potentially disrupting the operations of other communicating devices. While implementation complexity has been extensively studied, probe distortion remains largely unexplored. To further assess the potential of autonomous RISs, this paper comprehensively and pragmatically studies fundamental trade-offs posed by these challenges. We examine the robustness of an HRIS-assisted massive multiple-input multiple-output (mMIMO) system under minimal design choices that reflect the essential elements and stringent conditions, including (a) two extremes of implementation complexity realized through minimalist operational designs of two HRIS hardware architectures, and (b) an oblivious BS that fully embraces probe distortion. To make our analysis possible, we propose a physical-layer orchestration framework that aligns HRIS and mMIMO operations. We provide empirical evidence showing that autonomous RIS holds promise even under these strict conditions and propose new research directions, particularly for advancing the understanding of probe distortion.
We investigate whether large language models (LLMs) can successfully perform financial statement analysis in a way similar to a professional human analyst. We provide standardized and anonymous financial statements to GPT4 and instruct the model to analyze them to determine the direction of firms' future earnings. Even without narrative or industry-specific information, the LLM outperforms financial analysts in its ability to predict earnings changes directionally. The LLM exhibits a relative advantage over human analysts in situations when the analysts tend to struggle. Furthermore, we find that the prediction accuracy of the LLM is on par with a narrowly trained state-of-the-art ML model. LLM prediction does not stem from its training memory. Instead, we find that the LLM generates useful narrative insights about a company's future performance. Lastly, our trading strategies based on GPT's predictions yield a higher Sharpe ratio and alphas than strategies based on other models. Our results suggest that LLMs may take a central role in analysis and decision-making.
Extraction of a high-fidelity 3D medial axis is a crucial operation in CAD. When dealing with a polygonal model as input, ensuring accuracy and tidiness becomes challenging due to discretization errors inherent in the mesh surface. Commonly, existing approaches yield medial-axis surfaces with various artifacts, including zigzag boundaries, bumpy surfaces, unwanted spikes, and non-smooth stitching curves. Considering that the surface of a CAD model can be easily decomposed into a collection of surface patches, its 3D medial axis can be extracted by computing the Voronoi diagram of these surface patches, where each surface patch serves as a generator. However, no solver currently exists for accurately computing such an extended Voronoi diagram. Under the assumption that each generator defines a linear distance field over a sufficiently small range, our approach operates by tetrahedralizing the region of interest and computing the medial axis within each tetrahedral element. Just as SurfaceVoronoi computes surface-based Voronoi diagrams by cutting a 3D prism with 3D planes (each plane encodes a linear field in a triangle), the key operation in this paper is to conduct the hyperplane cutting process in 4D, where each hyperplane encodes a linear field in a tetrahedron. In comparison with the state-of-the-art, our algorithm produces better outcomes. Furthermore, it can also be used to compute the offset surface.
Markov chains are the de facto finite-state model for stochastic dynamical systems, and Markov decision processes (MDPs) extend Markov chains by incorporating non-deterministic behaviors. Given an MDP and rewards on states, a classical optimization criterion is the maximal expected total reward where the MDP stops after T steps, which can be computed by a simple dynamic programming algorithm. We consider a natural generalization of the problem where the stopping times can be chosen according to a probability distribution, such that the expected stopping time is T, to optimize the expected total reward. Quite surprisingly we establish inter-reducibility of the expected stopping-time problem for Markov chains with the Positivity problem (which is related to the well-known Skolem problem), for which establishing either decidability or undecidability would be a major breakthrough. Given the hardness of the exact problem, we consider the approximate version of the problem: we show that it can be solved in exponential time for Markov chains and in exponential space for MDPs.
Virtual reality (VR) environments have greatly expanded opportunities for immersive exploration, yet physically navigating these digital spaces remains a significant challenge. In this paper, we present the conceptual framework of NAVIS (Navigating Virtual Spaces with Immersive Scooters), a novel system that utilizes a scooter-based interface to enhance both navigation and interaction within virtual environments. NAVIS combines real-time physical mobility, haptic feedback, and CAVE-like (Cave Automatic Virtual Environment) technology to create a realistic sense of travel and movement, improving both spatial awareness and the overall immersive experience. By offering a more natural and physically engaging method of exploration, NAVIS addresses key limitations found in traditional VR locomotion techniques, such as teleportation or joystick control, which can detract from immersion and realism. This approach highlights the potential of combining physical movement with virtual environments to provide a more intuitive and enjoyable experience for users, opening up new possibilities for applications in gaming, education, and beyond.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.