亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning source code models have been applied very successfully to the problem of automated program repair. One of the standing issues is the small input window of current models which often cannot fully fit the context code required for a bug fix (e.g., method or class declarations of a project). Instead, input is often restricted to the local context, that is, the lines below and above the bug location. In this work we study the importance of this local context on repair success: how much local context is needed?; is context before or after the bug location more important? how is local context tied to the bug type? To answer these questions we train and evaluate Transformer models in many different local context configurations on three datasets and two programming languages. Our results indicate that overall repair success increases with the size of the local context (albeit not for all bug types) and confirm the common practice that roughly 50-60% of the input window should be used for context leading the bug. Our results are not only relevant for researchers working on Transformer-based APR tools but also for benchmark and dataset creators who must decide what and how much context to include in their datasets.

相關內容

程(cheng)序猿的(de)天敵(di) 有(you)時是一個不(bu)能碰的(de)magic

This article proposes a test procedure that can be used to test ML models and ML-based systems independently of the actual training process. In this way, the typical quality statements such as accuracy and precision of these models and system can be verified independently, taking into account their black box character and the immanent stochastic properties of ML models and their training data. The article presents first results from a set of test experiments and suggest extensions to existing test methods reflecting the stochastic nature of ML models and ML-based systems.

Training large language models (LLMs) with a large and diverse instruction dataset aligns the models to comprehend and follow human instructions. Recent works have shown that using a small set of high-quality instructions can outperform using large yet more noisy ones. Because instructions are unlabeled and their responses are natural text, traditional active learning schemes with the model's confidence cannot be directly applied to the selection of unlabeled instructions. In this work, we propose a novel method for instruction selection, called SelectLLM, that leverages LLMs for the selection of high-quality instructions. Our high-level idea is to use LLMs to estimate the usefulness and impactfulness of each instruction without the corresponding labels (i.e., responses), via prompting. SelectLLM involves two steps: dividing the unlabelled instructions using a clustering algorithm (e.g., CoreSet) to multiple clusters, and then prompting LLMs to choose high-quality instructions within each cluster. SelectLLM showed comparable or slightly better performance on the popular instruction benchmarks, compared to the recent state-of-the-art selection methods. All code and data are publicly available (//github.com/minnesotanlp/select-llm).

In learning-based functionality stealing, the attacker is trying to build a local model based on the victim's outputs. The attacker has to make choices regarding the local model's architecture, optimization method and, specifically for NLP models, subword vocabulary, such as BPE. On the machine translation task, we explore (1) whether the choice of the vocabulary plays a role in model stealing scenarios and (2) if it is possible to extract the victim's vocabulary. We find that the vocabulary itself does not have a large effect on the local model's performance. Given gray-box model access, it is possible to collect the victim's vocabulary by collecting the outputs (detokenized subwords on the output). The results of the minimum effect of vocabulary choice are important more broadly for black-box knowledge distillation.

Recently, numerous highly-valuable Deep Neural Networks (DNNs) have been trained using deep learning algorithms. To protect the Intellectual Property (IP) of the original owners over such DNN models, backdoor-based watermarks have been extensively studied. However, most of such watermarks fail upon model extraction attack, which utilizes input samples to query the target model and obtains the corresponding outputs, thus training a substitute model using such input-output pairs. In this paper, we propose a novel watermark to protect IP of DNN models against model extraction, named MEA-Defender. In particular, we obtain the watermark by combining two samples from two source classes in the input domain and design a watermark loss function that makes the output domain of the watermark within that of the main task samples. Since both the input domain and the output domain of our watermark are indispensable parts of those of the main task samples, the watermark will be extracted into the stolen model along with the main task during model extraction. We conduct extensive experiments on four model extraction attacks, using five datasets and six models trained based on supervised learning and self-supervised learning algorithms. The experimental results demonstrate that MEA-Defender is highly robust against different model extraction attacks, and various watermark removal/detection approaches.

We study the problem of allocating indivisible resources under the connectivity constraints of a graph $G$. This model, initially introduced by Bouveret et al. (published in IJCAI, 2017), effectively encompasses a diverse array of scenarios characterized by spatial or temporal limitations, including the division of land plots and the allocation of time plots. In this paper, we introduce a novel fairness concept that integrates local comparisons within the social network formed by a connected allocation of the item graph. Our particular focus is to achieve pairwise-maximin fair share (PMMS) among the "neighbors" within this network. For any underlying graph structure, we show that a connected allocation that maximizes Nash welfare guarantees a $(1/2)$-PMMS fairness. Moreover, for two agents, we establish that a $(3/4)$-PMMS allocation can be efficiently computed. Additionally, we demonstrate that for three agents and the items aligned on a path, a PMMS allocation is always attainable and can be computed in polynomial time. Lastly, when agents have identical additive utilities, we present a pseudo-polynomial-time algorithm for a $(3/4)$-PMMS allocation, irrespective of the underlying graph $G$. Furthermore, we provide a polynomial-time algorithm for obtaining a PMMS allocation when $G$ is a tree.

Unsupervised learning of object-centric representations in dynamic visual scenes is challenging. Unlike most previous approaches that learn to decompose 2D images, we present DynaVol, a 3D scene generative model that unifies geometric structures and object-centric learning in a differentiable volume rendering framework. The key idea is to perform object-centric voxelization to capture the 3D nature of the scene, which infers the probability distribution over objects at individual spatial locations. These voxel features evolve over time through a canonical-space deformation function, forming the basis for global representation learning via slot attention. The voxel features and global features are complementary and are both leveraged by a compositional NeRF decoder for volume rendering. DynaVol remarkably outperforms existing approaches for unsupervised dynamic scene decomposition. Once trained, the explicitly meaningful voxel features enable additional capabilities that 2D scene decomposition methods cannot achieve: it is possible to freely edit the geometric shapes or manipulate the motion trajectories of the objects.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

北京阿比特科技有限公司