亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a new type of soft continuum robot, called SCoReS, which is capable of self-controlling continuously its curvature at the segment level; in contrast to previous designs which either require external forces or machine elements, or whose variable curvature capabilities are discrete -- depending on the number of locking mechanisms and segments. The ability to have a variable curvature, whose control is continuous and independent from external factors, makes a soft continuum robot more adaptive in constrained environments, similar to what is observed in nature in the elephant's trunk or ostrich's neck for instance which exhibit multiple curvatures. To this end, our soft continuum robot enables reconfigurable variable curvatures utilizing a variable stiffness growing spine based on micro-particle granular jamming for the first time. We detail the design of the proposed robot, presenting its modeling through beam theory and FEA simulation -- which is validated through experiments. The robot's versatile bending profiles are then explored in experiments and an application to grasp fruits at different configurations is demonstrated.

相關內容

In this paper, a novel amplitude phase shift keying (APSK) modulation scheme for cooperative backscatter communications aided by a reconfigurable intelligent surface (RIS-CBC) is presented, according to which the RIS is configured to modulate backscatter information onto unmodulated or PSK-modulated signals impinging on its surface via APSK. We consider both passive and active RISs, with the latter including an amplification unit at each reflecting element. In the passive (resp. active) RIS-CBC-APSK, backscatter information is conveyed through the number of RIS reflecting elements being on the ON state (resp. active mode) and their phase shift values. By using the optimal APSK constellation to ensure that reflected signals from the RIS undergo APSK modulation, a bit-mapping mechanism is presented. Assuming maximum-likelihood detection, we also present closed-form upper bounds for the symbol error rate (SER) performance for both passive and active RIS-CBC-APSK schemes over Rician fading channels. In addition, we devise a low-complexity detector that can achieve flexible trade-offs between performance and complexity. Finally, we extend RIS-CBC-APSK to multiple-input single-output scenarios and present an alternating optimization approach for the joint design of transmit beamforming and RIS reflection. Our extensive simulation results on the SER performance corroborate our conducted performance analysis and showcase the superiority of the proposed RIS-CBC-APSK schemes over the state-of-the-art RIS-CBC benchmarks.

A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode. This reset process demands substantial human intervention, making it difficult for the agent to learn continuously and autonomously. Several recent works have introduced autonomous reinforcement learning (ARL) algorithms that generate curricula for jointly training reset and forward policies. While their curricula can reduce the number of required manual resets by taking into account the agent's learning progress, they rely on task-specific knowledge, such as predefined initial states or reset reward functions. In this paper, we propose a novel ARL algorithm that can generate a curriculum adaptive to the agent's learning progress without task-specific knowledge. Our curriculum empowers the agent to autonomously reset to diverse and informative initial states. To achieve this, we introduce a success discriminator that estimates the success probability from each initial state when the agent follows the forward policy. The success discriminator is trained with relabeled transitions in a self-supervised manner. Our experimental results demonstrate that our ARL algorithm can generate an adaptive curriculum and enable the agent to efficiently bootstrap to solve sparse-reward maze navigation and manipulation tasks, outperforming baselines with significantly fewer manual resets.

This study presents an empirical investigation into the design and impact of autonomous dialogues in human-robot interaction for behavior change coaching. We focus on the use of Haru, a tabletop social robot, and explore the implementation of the Tiny Habits method for fostering positive behavior change. The core of our study lies in developing a fully autonomous dialogue system that maximizes Haru's emotional expressiveness and unique personality. Our methodology involved iterative design and extensive testing of the dialogue system, ensuring it effectively embodied the principles of the Tiny Habits method while also incorporating strategies for trust-raising and trust-dampening. The effectiveness of the final version of the dialogue was evaluated in an experimental study with human participants (N=12). The results indicated a significant improvement in perceptions of Haru's liveliness, interactivity, and neutrality. Additionally, our study contributes to the broader understanding of dialogue design in social robotics, offering practical insights for future developments in the field.

Enabling robots to follow complex natural language instructions is an important yet challenging problem. People want to flexibly express constraints, refer to arbitrary landmarks and verify behavior when instructing robots. Conversely, robots must disambiguate human instructions into specifications and ground instruction referents in the real world. We propose Language Instruction grounding for Motion Planning (LIMP), a system that leverages foundation models and temporal logics to generate instruction-conditioned semantic maps that enable robots to verifiably follow expressive and long-horizon instructions with open vocabulary referents and complex spatiotemporal constraints. In contrast to prior methods for using foundation models in robot task execution, LIMP constructs an explainable instruction representation that reveals the robot's alignment with an instructor's intended motives and affords the synthesis of robot behaviors that are correct-by-construction. We demonstrate LIMP in three real-world environments, across a set of 35 complex spatiotemporal instructions, showing the generality of our approach and the ease of deployment in novel unstructured domains. In our experiments, LIMP can spatially ground open-vocabulary referents and synthesize constraint-satisfying plans in 90% of object-goal navigation and 71% of mobile manipulation instructions. See supplementary videos at //robotlimp.github.io

Fingerprint recognition stands as a pivotal component of biometric technology, with diverse applications from identity verification to advanced search tools. In this paper, we propose a unique method for deriving robust fingerprint representations by leveraging enhancement-based pre-training. Building on the achievements of U-Net-based fingerprint enhancement, our method employs a specialized encoder to derive representations from fingerprint images in a self-supervised manner. We further refine these representations, aiming to enhance the verification capabilities. Our experimental results, tested on publicly available fingerprint datasets, reveal a marked improvement in verification performance against established self-supervised training techniques. Our findings not only highlight the effectiveness of our method but also pave the way for potential advancements. Crucially, our research indicates that it is feasible to extract meaningful fingerprint representations from degraded images without relying on enhanced samples.

Traditional language models, adept at next-token prediction in text sequences, often struggle with transduction tasks between distinct symbolic systems, particularly when parallel data is scarce. Addressing this issue, we introduce \textit{symbolic autoencoding} ($\Sigma$AE), a self-supervised framework that harnesses the power of abundant unparallel data alongside limited parallel data. $\Sigma$AE connects two generative models via a discrete bottleneck layer and is optimized end-to-end by minimizing reconstruction loss (simultaneously with supervised loss for the parallel data), such that the sequence generated by the discrete bottleneck can be read out as the transduced input sequence. We also develop gradient-based methods allowing for efficient self-supervised sequence learning despite the discreteness of the bottleneck. Our results demonstrate that $\Sigma$AE significantly enhances performance on transduction tasks, even with minimal parallel data, offering a promising solution for weakly supervised learning scenarios.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司