Learning directed acyclic graphs (DAGs) to identify causal relations underlying observational data is crucial but also poses significant challenges. Recently, topology-based methods have emerged as a two-step approach to discovering DAGs by first learning the topological ordering of variables and then eliminating redundant edges, while ensuring that the graph remains acyclic. However, one limitation is that these methods would generate numerous spurious edges that require subsequent pruning. To overcome this limitation, in this paper, we propose an improvement to topology-based methods by introducing limited time series data, consisting of only two cross-sectional records that need not be adjacent in time and are subject to flexible timing. By incorporating conditional instrumental variables as exogenous interventions, we aim to identify descendant nodes for each variable. Following this line, we propose a hierarchical topological ordering algorithm with conditional independence test (HT-CIT), which enables the efficient learning of sparse DAGs with a smaller search space compared to other popular approaches. The HT-CIT algorithm greatly reduces the number of edges that need to be pruned. Empirical results from synthetic and real-world datasets demonstrate the superiority of the proposed HT-CIT algorithm.
Network alignment is the task of establishing one-to-one correspondences between the nodes of different graphs and finds a plethora of applications in high-impact domains. However, this task is known to be NP-hard in its general form, and existing algorithms do not scale up as the size of the graphs increases. To tackle both challenges we propose a novel generalized graph autoencoder architecture, designed to extract powerful and robust node embeddings, that are tailored to the alignment task. We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs and can achieve more accurate alignment compared to classical spectral methods. Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining. Extensive experiments on both network and sub-network alignment with real-world graphs provide corroborating evidence supporting the effectiveness and scalability of the proposed approach.
Medical image segmentation aims to delineate the anatomical or pathological structures of interest, playing a crucial role in clinical diagnosis. A substantial amount of high-quality annotated data is crucial for constructing high-precision deep segmentation models. However, medical annotation is highly cumbersome and time-consuming, especially for medical videos or 3D volumes, due to the huge labeling space and poor inter-frame consistency. Recently, a fundamental task named Moving Object Segmentation (MOS) has made significant advancements in natural images. Its objective is to delineate moving objects from the background within image sequences, requiring only minimal annotations. In this paper, we propose the first foundation model, named iMOS, for MOS in medical images. Extensive experiments on a large multi-modal medical dataset validate the effectiveness of the proposed iMOS. Specifically, with the annotation of only a small number of images in the sequence, iMOS can achieve satisfactory tracking and segmentation performance of moving objects throughout the entire sequence in bi-directions. We hope that the proposed iMOS can help accelerate the annotation speed of experts, and boost the development of medical foundation models.
Non-orthogonal multiple access (NOMA) is a promising transmission scheme employed at the physical layer to improve the spectral efficiency. In this paper, we develop a novel cross-layer approach by employing NOMA at the physical layer and instantly decodable network coding (IDNC) at the network layer in downlink cellular networks. Following this approach, two IDNC packets are selected for each transmission, with one designed for all receivers and the other designed only for the strong receivers which can employ successive interference cancellation (SIC). The IDNC packets selection, transmission rates adaption for the two IDNC packets, and NOMA power allocation are jointly considered to improve the throughput of the network. Given the intractability of the problem, we decouple it into two separate subproblems, the IDNC scheduling which jointly selects the IDNC packets and the transmission rates with the given NOMA power allocation, and the NOMA power allocation with the given IDNC scheduling. The IDNC scheduling can be reduced to a maximum weight clique problem, and two heuristic algorithms named as maximum weight vertex (MWV) search and maximum weight path based maximum weight vertex (MWP-MWV) search are developed to solve the first subproblem. An iterative function evaluation (IFE) approach is proposed to solve the second subproblem. Simulation results are presented to demonstrates the throughput gain of the proposed approach over the existing solutions.
Through the Bayesian lens of data assimilation, uncertainty on model parameters is traditionally quantified through the posterior covariance matrix. However, in modern settings involving high-dimensional and computationally expensive forward models, posterior covariance knowledge must be relaxed to deterministic or stochastic approximations. In the carbon flux inversion literature, Chevallier et al. proposed a stochastic method capable of approximating posterior variances of linear functionals of the model parameters that is particularly well-suited for large-scale Earth-system data assimilation tasks. This note formalizes this algorithm and clarifies its properties. We provide a formal statement of the algorithm, demonstrate why it converges to the desired posterior variance quantity of interest, and provide additional uncertainty quantification allowing incorporation of the Monte Carlo sampling uncertainty into the method's Bayesian credible intervals. The methodology is demonstrated using toy simulations and a realistic carbon flux inversion observing system simulation experiment.
The problems of computing graph colorings and clique covers are central challenges in combinatorial optimization. Both of these are known to be NP-hard, and thus computationally intractable in the worst-case instance. A prominent approach for computing approximate solutions to these problems is the celebrated Lov\'asz theta function $\vartheta(G)$, which is specified as the solution of a semidefinite program (SDP), and hence tractable to compute. In this work, we move beyond the worst-case analysis and set out to understand whether the Lov\'asz theta function recovers clique covers for random instances that have a latent clique cover structure, possibly obscured by noise. We answer this question in the affirmative and show that for graphs generated from the planted clique model we introduce in this work, the SDP formulation of $\vartheta(G)$ has a unique solution that reveals the underlying clique-cover structure with high-probability. The main technical step is an intermediate result where we prove a deterministic condition of recovery based on an appropriate notion of sparsity.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.