亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Maximum k-Defective Clique Problem (MDCP) aims to find a maximum k-defective clique in a given graph, where a k-defective clique is a relaxation clique missing at most k edges. MDCP is NP-hard and finds many real-world applications in analyzing dense but not necessarily complete subgraphs. Exact algorithms for MDCP mainly follow the Branch-and-bound (BnB) framework, whose performance heavily depends on the quality of the upper bound on the cardinality of a maximum k-defective clique. The state-of-the-art BnB MDCP algorithms calculate the upper bound quickly but conservatively as they ignore many possible missing edges. In this paper, we propose a novel CoLoring-based Upper Bound (CLUB) that uses graph coloring techniques to detect independent sets so as to detect missing edges ignored by the previous methods. We then develop a new BnB algorithm for MDCP, called KD-Club, using CLUB in both the preprocessing stage for graph reduction and the BnB searching process for branch pruning. Extensive experiments show that KD-Club significantly outperforms state-of-the-art BnB MDCP algorithms on the number of solved instances within the cut-off time, having much smaller search tree and shorter solving time on various benchmarks.

相關內容

We examine the possibility of approximating Maximum Vertex-Disjoint Shortest Paths. In this problem, the input is an edge-weighted (directed or undirected) $n$-vertex graph $G$ along with $k$ terminal pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$. The task is to connect as many terminal pairs as possible by pairwise vertex-disjoint paths such that each path is a shortest path between the respective terminals. Our work is anchored in the recent breakthrough by Lochet [SODA '21], which demonstrates the polynomial-time solvability of the problem for a fixed value of $k$. Lochet's result implies the existence of a polynomial-time $ck$-approximation for Maximum Vertex-Disjoint Shortest Paths, where $c \leq 1$ is a constant. Our first result suggests that this approximation algorithm is, in a sense, the best we can hope for. More precisely, assuming the gap-ETH, we exclude the existence of an $o(k)$-approximations within $f(k) \cdot $poly($n$) time for any function $f$ that only depends on $k$. Our second result demonstrates the infeasibility of achieving an approximation ratio of $n^{\frac{1}{2}-\varepsilon}$ in polynomial time, unless P = NP. It is not difficult to show that a greedy algorithm selecting a path with the minimum number of arcs results in a $\lceil\sqrt{\ell}\rceil$-approximation, where $\ell$ is the number of edges in all the paths of an optimal solution. Since $\ell \leq n$, this underscores the tightness of the $n^{\frac{1}{2}-\varepsilon}$-inapproximability bound. Additionally, we establish that Maximum Vertex-Disjoint Shortest Paths is fixed-parameter tractable when parameterized by $\ell$ but does not admit a polynomial kernel. Our hardness results hold for undirected graphs with unit weights, while our positive results extend to scenarios where the input graph is directed and features arbitrary (non-negative) edge weights.

Online Unsupervised Domain Adaptation (OUDA) for person Re-Identification (Re-ID) is the task of continuously adapting a model trained on a well-annotated source domain dataset to a target domain observed as a data stream. In OUDA, person Re-ID models face two main challenges: catastrophic forgetting and domain shift. In this work, we propose a new Source-guided Similarity Preservation (S2P) framework to alleviate these two problems. Our framework is based on the extraction of a support set composed of source images that maximizes the similarity with the target data. This support set is used to identify feature similarities that must be preserved during the learning process. S2P can incorporate multiple existing UDA methods to mitigate catastrophic forgetting. Our experiments show that S2P outperforms previous state-of-the-art methods on multiple real-to-real and synthetic-to-real challenging OUDA benchmarks.

A new moving mesh scheme based on the Lagrange-Galerkin method for the approximation of the one-dimensional convection-diffusion equation is studied. The mesh movement, which is prescribed by a discretized dynamical system for the nodal points, follows the direction of convection. It is shown that under a restriction of the time increment the mesh movement cannot lead to an overlap of the elements and therefore an invalid mesh. For the linear element, optimal error estimates in the $\ell^\infty(L^2) \cap \ell^2(H_0^1)$ norm are proved in case of both, a first-order backward Euler method and a second-order two-step method in time. These results are based on new estimates of the time dependent interpolation operator derived in this work. Preservation of the total mass is verified for both choices of the time discretization. Numerical experiments are presented that confirm the error estimates and demonstrate that the proposed moving mesh scheme can circumvent limitations that the Lagrange-Galerkin method on a fixed mesh exhibits.

We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, CyberDemo outperforms traditional in-domain real-world demonstrations when transferred to the real world, handling diverse physical and visual conditions. Regardless of its affordability and convenience in data collection, CyberDemo outperforms baseline methods in terms of success rates across various tasks and exhibits generalizability with previously unseen objects. For example, it can rotate novel tetra-valve and penta-valve, despite human demonstrations only involving tri-valves. Our research demonstrates the significant potential of simulated human demonstrations for real-world dexterous manipulation tasks. More details can be found at //cyber-demo.github.io

While Large Language Models (LLMs) display versatile functionality, they continue to generate harmful, biased, and toxic content, as demonstrated by the prevalence of human-designed jailbreaks. In this work, we present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks that only requires black-box access to the target LLM. TAP utilizes an LLM to iteratively refine candidate (attack) prompts using tree-of-thought reasoning until one of the generated prompts jailbreaks the target. Crucially, before sending prompts to the target, TAP assesses them and prunes the ones unlikely to result in jailbreaks. Using tree-of-thought reasoning allows TAP to navigate a large search space of prompts and pruning reduces the total number of queries sent to the target. In empirical evaluations, we observe that TAP generates prompts that jailbreak state-of-the-art LLMs (including GPT4 and GPT4-Turbo) for more than 80% of the prompts using only a small number of queries. Interestingly, TAP is also capable of jailbreaking LLMs protected by state-of-the-art guardrails, e.g., LlamaGuard. This significantly improves upon the previous state-of-the-art black-box method for generating jailbreaks.

The work deals with two major topics concerning the numerical analysis of Runge-Kutta-like (RK-like) methods, namely their stability and order of convergence. RK-like methods differ from additive RK methods in that their coefficients are allowed to depend on the solution and the step size. As a result of this, we also refer to them as non-standard additive RK (NSARK) methods. The first major part of this thesis is dedicated to providing a tool for deriving order conditions for NSARK methods. The proposed approach may yield implicit order conditions, which can be rewritten in explicit form using the NB-series of the stages. The obtained explicit order conditions can be further reduced using Gr\"obner bases computations. With the presented approach, it was possible for the first time to obtain conditions for the construction of 3rd and 4th order GeCo as well as 4th order MPRK schemes. Moreover, a new fourth order MPRK method is constructed using our theory and the order of convergence is validated numerically. The second major part is concerned with the stability of nonlinear time integrators preserving at least one linear invariant. We discuss how the given approach generalizes the notion of A-stability. We can prove that investigating the Jacobian of the generating map is sufficient to understand the stability of the nonlinear method in a neighborhood of the steady state. This approach allows for the first time the investigation of several modified Patankar. In the case of MPRK schemes, we compute a general stability function in a way that can be easily adapted to the case of PDRS. Finally, the approach from the theory of dynamical systems is used to derive a necessary condition for avoiding unrealistic oscillations of the numerical approximation.

Graph anomaly detection (GAD) aims to identify anomalous graphs that significantly deviate from other ones, which has raised growing attention due to the broad existence and complexity of graph-structured data in many real-world scenarios. However, existing GAD methods usually execute with centralized training, which may lead to privacy leakage risk in some sensitive cases, thereby impeding collaboration among organizations seeking to collectively develop robust GAD models. Although federated learning offers a promising solution, the prevalent non-IID problems and high communication costs present significant challenges, particularly pronounced in collaborations with graph data distributed among different participants. To tackle these challenges, we propose an effective federated graph anomaly detection framework (FGAD). We first introduce an anomaly generator to perturb the normal graphs to be anomalous, and train a powerful anomaly detector by distinguishing generated anomalous graphs from normal ones. Then, we leverage a student model to distill knowledge from the trained anomaly detector (teacher model), which aims to maintain the personality of local models and alleviate the adverse impact of non-IID problems. Moreover, we design an effective collaborative learning mechanism that facilitates the personalization preservation of local models and significantly reduces communication costs among clients. Empirical results of the GAD tasks on non-IID graphs compared with state-of-the-art baselines demonstrate the superiority and efficiency of the proposed FGAD method.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司