亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, advancements in deep learning-based superpixel segmentation methods have brought about improvements in both the efficiency and the performance of segmentation. However, a significant challenge remains in generating superpixels that strictly adhere to object boundaries while conveying rich visual significance, especially when cross-surface color correlations may interfere with objects. Drawing inspiration from neural structure and visual mechanisms, we propose a biological network architecture comprising an Enhanced Screening Module (ESM) and a novel Boundary-Aware Label (BAL) for superpixel segmentation. The ESM enhances semantic information by simulating the interactive projection mechanisms of the visual cortex. Additionally, the BAL emulates the spatial frequency characteristics of visual cortical cells to facilitate the generation of superpixels with strong boundary adherence. We demonstrate the effectiveness of our approach through evaluations on both the BSDS500 dataset and the NYUv2 dataset.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · MoDELS · INFORMS · 知識表示 · 表示 ·
2023 年 11 月 19 日

The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge. This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg's model) and reasoning about knowledge mediated by other agents observing data (Wigner's friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.

The influence of natural image transformations on receptive field responses is crucial for modelling visual operations in computer vision and biological vision. In this regard, covariance properties with respect to geometric image transformations in the earliest layers of the visual hierarchy are essential for expressing robust image operations and for formulating invariant visual operations at higher levels. This paper defines and proves a joint covariance property under compositions of spatial scaling transformations, spatial affine transformations, Galilean transformations and temporal scaling transformations, which makes it possible to characterize how different types of image transformations interact with each other. Specifically, the derived relations show the receptive field parameters need to be transformed, in order to match the output from spatio-temporal receptive fields with the underlying spatio-temporal image transformations.

We study regression adjustment with general function class approximations for estimating the average treatment effect in the design-based setting. Standard regression adjustment involves bias due to sample re-use, and this bias leads to behavior that is sub-optimal in the sample size, and/or imposes restrictive assumptions. Our main contribution is to introduce a novel decorrelation-based approach that circumvents these issues. We prove guarantees, both asymptotic and non-asymptotic, relative to the oracle functions that are targeted by a given regression adjustment procedure. We illustrate our method by applying it to various high-dimensional and non-parametric problems, exhibiting improved sample complexity and weakened assumptions relative to known approaches.

A central task in knowledge compilation is to compile a CNF-SAT instance into a succinct representation format that allows efficient operations such as testing satisfiability, counting, or enumerating all solutions. Useful representation formats studied in this area range from ordered binary decision diagrams (OBDDs) to circuits in decomposable negation normal form (DNNFs). While it is known that there exist CNF formulas that require exponential size representations, the situation is less well studied for other types of constraints than Boolean disjunctive clauses. The constraint satisfaction problem (CSP) is a powerful framework that generalizes CNF-SAT by allowing arbitrary sets of constraints over any finite domain. The main goal of our work is to understand for which type of constraints (also called the constraint language) it is possible to efficiently compute representations of polynomial size. We answer this question completely and prove two tight characterizations of efficiently compilable constraint languages, depending on whether target format is structured. We first identify the combinatorial property of ``strong blockwise decomposability'' and show that if a constraint language has this property, we can compute DNNF representations of linear size. For all other constraint languages we construct families of CSP-instances that provably require DNNFs of exponential size. For a subclass of ``strong uniformly blockwise decomposable'' constraint languages we obtain a similar dichotomy for structured DNNFs. In fact, strong (uniform) blockwise decomposability even allows efficient compilation into multi-valued analogs of OBDDs and FBDDs, respectively. Thus, we get complete characterizations for all knowledge compilation classes between O(B)DDs and DNNFs.

Compartmental models provide simple and efficient tools to analyze the relevant transmission processes during an outbreak, to produce short-term forecasts or transmission scenarios, and to assess the impact of vaccination campaigns. However, their calibration is not straightforward, since many factors contribute to the rapid change of the transmission dynamics during an epidemic. For example, there might be changes in the individual awareness, the imposition of non-pharmacological interventions and the emergence of new variants. As a consequence, model parameters such as the transmission rate are doomed to change in time, making their assessment more challenging. Here, we propose to use Physics-Informed Neural Networks (PINNs) to track the temporal changes in the model parameters and provide an estimate of the model state variables. PINNs recently gained attention in many engineering applications thanks to their ability to consider both the information from data (typically uncertain) and the governing equations of the system. The ability of PINNs to identify unknown model parameters makes them particularly suitable to solve ill-posed inverse problems, such as those arising in the application of epidemiological models. Here, we develop a reduced-split approach for the implementation of PINNs to estimate the temporal changes in the state variables and transmission rate of an epidemic based on the SIR model equation and infectious data. The main idea is to split the training first on the epidemiological data, and then on the residual of the system equations. The proposed method is applied to five synthetic test cases and two real scenarios reproducing the first months of the COVID-19 Italian pandemic. Our results show that the split implementation of PINNs outperforms the standard approach in terms of accuracy (up to one order of magnitude) and computational times (speed up of 20%).

We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other applications.

Tracking the fundamental frequency (f0) of a monophonic instrumental performance is effectively a solved problem with several solutions achieving 99% accuracy. However, the related task of automatic music transcription requires a further processing step to segment an f0 contour into discrete notes. This sub-task of note segmentation is necessary to enable a range of applications including musicological analysis and symbolic music generation. Building on CREPE, a state-of-the-art monophonic pitch tracking solution based on a simple neural network, we propose a simple and effective method for post-processing CREPE's output to achieve monophonic note segmentation. The proposed method demonstrates state-of-the-art results on two challenging datasets of monophonic instrumental music. Our approach also gives a 97% reduction in the total number of parameters used when compared with other deep learning based methods.

The maximum likelihood estimator (MLE) is pivotal in statistical inference, yet its application is often hindered by the absence of closed-form solutions for many models. This poses challenges in real-time computation scenarios, particularly within embedded systems technology, where numerical methods are impractical. This study introduces a generalized form of the MLE that yields closed-form estimators under certain conditions. We derive the asymptotic properties of the proposed estimator and demonstrate that our approach retains key properties such as invariance under one-to-one transformations, strong consistency, and an asymptotic normal distribution. The effectiveness of the generalized MLE is exemplified through its application to the Gamma, Nakagami, and Beta distributions, showcasing improvements over the traditional MLE. Additionally, we extend this methodology to a bivariate gamma distribution, successfully deriving closed-form estimators. This advancement presents significant implications for real-time statistical analysis across various applications.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司