亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the last decade, Artificial Intelligence (AI) has become increasingly popular, especially with the use of chatbots such as ChatGPT, Gemini, and DALL-E. With this rise, large language models (LLMs) and Generative AI (GenAI) have also become more prevalent in everyday use. These advancements strengthen cybersecurity's defensive posture and open up new attack avenues for adversaries as well. This paper provides a comprehensive overview of the current state-of-the-art deployments of GenAI, covering assaults, jailbreaking, and applications of prompt injection and reverse psychology. This paper also provides the various applications of GenAI in cybercrimes, such as automated hacking, phishing emails, social engineering, reverse cryptography, creating attack payloads, and creating malware. GenAI can significantly improve the automation of defensive cyber security processes through strategies such as dataset construction, safe code development, threat intelligence, defensive measures, reporting, and cyberattack detection. In this study, we suggest that future research should focus on developing robust ethical norms and innovative defense mechanisms to address the current issues that GenAI creates and to also further encourage an impartial approach to its future application in cybersecurity. Moreover, we underscore the importance of interdisciplinary approaches further to bridge the gap between scientific developments and ethical considerations.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Preference elicitation explicitly asks users what kind of recommendations they would like to receive. It is a popular technique for conversational recommender systems to deal with cold-starts. Previous work has studied selection bias in implicit feedback, e.g., clicks, and in some forms of explicit feedback, i.e., ratings on items. Despite the fact that the extreme sparsity of preference elicitation interactions make them severely more prone to selection bias than natural interactions, the effect of selection bias in preference elicitation on the resulting recommendations has not been studied yet. To address this gap, we take a first look at the effects of selection bias in preference elicitation and how they may be further investigated in the future. We find that a big hurdle is the current lack of any publicly available dataset that has preference elicitation interactions. As a solution, we propose a simulation of a topic-based preference elicitation process. The results from our simulation-based experiments indicate (i) that ignoring the effect of selection bias early in preference elicitation can lead to an exacerbation of overrepresentation in subsequent item recommendations, and (ii) that debiasing methods can alleviate this effect, which leads to significant improvements in subsequent item recommendation performance. Our aim is for the proposed simulator and initial results to provide a starting point and motivation for future research into this important but overlooked problem setting.

Internet of Everything (IoE) is a newly emerging trend, especially in homes. Marketing forces toward smart homes are also accelerating the spread of IoE devices in households. An obvious risk of the rapid adoption of these smart devices is that many lack controls for protecting the privacy and security of end users from attacks designed to disrupt lives and incur financial losses. Today the smart home is a system for managing the basic life support processes of both small systems, e.g., commercial, office premises, apartments, cottages, and largely automated complexes, e.g., commercial and industrial complexes. One of the critical tasks to be solved by the concept of a modern smart home is the problem of preventing the usage of IoE resources. Recently, there has been a rapid increase in attacks on consumer IoE devices. Memory corruption vulnerabilities constitute a significant class of vulnerabilities in software security through which attackers can gain control of an entire system. Numerous memory corruption vulnerabilities have been found in IoE firmware already deployed in the consumer market. This paper aims to analyze and explain the resource usage attack and create a low-cost simulation environment to aid in the dynamic analysis of the attack. Further, we perform controlled resource usage attacks while measuring resource consumption on resource-constrained victims' IoE devices, such as CPU and memory utilization. We also build a lightweight algorithm to detect memory usage attacks in the IoE environment. The result shows high efficiency in detecting and mitigating memory usage attacks by detecting when the intruder starts and stops the attack.

Health literacy is crucial to supporting good health and is a major national goal. Audio delivery of information is becoming more popular for informing oneself. In this study, we evaluate the effect of audio enhancements in the form of information emphasis and pauses with health texts of varying difficulty and we measure health information comprehension and retention. We produced audio snippets from difficult and easy text and conducted the study on Amazon Mechanical Turk (AMT). Our findings suggest that emphasis matters for both information comprehension and retention. When there is no added pause, emphasizing significant information can lower the perceived difficulty for difficult and easy texts. Comprehension is higher (54%) with correctly placed emphasis for the difficult texts compared to not adding emphasis (50%). Adding a pause lowers perceived difficulty and can improve retention but adversely affects information comprehension.

Since Automated Driving Systems are not expected to operate flawlessly, Automated Vehicles will require human assistance in certain situations. For this reason, teleoperation offers the opportunity for a human to be remotely connected to the vehicle and assist it. The Remote Operator can provide extensive support by directly controlling the vehicle, eliminating the need for Automated Driving functions. However, due to the physical disconnection to the vehicle, monitoring and controlling is challenging compared to driving in the vehicle. Therefore, this work follows the approach of simplifying the task for the Remote Operator by separating the path and velocity input. In a study using a miniature vehicle, different operator-vehicle interactions and input devices were compared based on collisions, task completion time, usability and workload. The evaluation revealed significant differences between the three implemented prototypes using a steering wheel, mouse and keyboard or a touchscreen. The separate input of path and velocity via mouse and keyboard or touchscreen is preferred but is slower compared to parallel input via steering wheel.

Fully supervised models are predominant in Bayesian active learning. We argue that their neglect of the information present in unlabelled data harms not just predictive performance but also decisions about what data to acquire. Our proposed solution is a simple framework for semi-supervised Bayesian active learning. We find it produces better-performing models than either conventional Bayesian active learning or semi-supervised learning with randomly acquired data. It is also easier to scale up than the conventional approach. As well as supporting a shift towards semi-supervised models, our findings highlight the importance of studying models and acquisition methods in conjunction.

We consider a graph coloring algorithm that processes vertices in order taken uniformly at random and assigns colors to them using First-Fit strategy. We show that this algorithm uses, in expectation, at most $(\frac{1}{2} + o(1))\cdot \ln n \,/\, \ln\ln n$ different colors to color any forest with $n$ vertices. We also construct a family of forests that shows that this bound is best possible.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司