亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motion deblurring is a critical ill-posed problem that is important in many vision-based robotics applications. The recently proposed event-based double integral (EDI) provides a theoretical framework for solving the deblurring problem with the event camera and generating clear images at high frame-rate. However, the original EDI is mainly designed for offline computation and does not support real-time requirement in many robotics applications. In this paper, we propose the fast EDI, an efficient implementation of EDI that can achieve real-time online computation on single-core CPU devices, which is common for physical robotic platforms used in practice. In experiments, our method can handle event rates at as high as 13 million event per second in a wide variety of challenging lighting conditions. We demonstrate the benefit on multiple downstream real-time applications, including localization, visual tag detection, and feature matching.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Precise and controllable image editing is a challenging task that has attracted significant attention. Recently, DragGAN enables an interactive point-based image editing framework and achieves impressive editing results with pixel-level precision. However, since this method is based on generative adversarial networks (GAN), its generality is upper-bounded by the capacity of the pre-trained GAN models. In this work, we extend such an editing framework to diffusion models and propose DragDiffusion. By leveraging large-scale pretrained diffusion models, we greatly improve the applicability of interactive point-based editing in real world scenarios. While most existing diffusion-based image editing methods work on text embeddings, DragDiffusion optimizes the diffusion latent to achieve precise spatial control. Although diffusion models generate images in an iterative manner, we empirically show that optimizing diffusion latent at one single step suffices to generate coherent results, enabling DragDiffusion to complete high-quality editing efficiently. Extensive experiments across a wide range of challenging cases (e.g., multi-objects, diverse object categories, various styles, etc.) demonstrate the versatility and generality of DragDiffusion.

Fault diagnosis is essential in industrial processes for monitoring the conditions of important machines. With the ever-increasing complexity of working conditions and demand for safety during production and operation, different diagnosis methods are required, and more importantly, an integrated fault diagnosis system that can cope with multiple tasks is highly desired. However, the diagnosis subtasks are often studied separately, and the currently available methods still need improvement for such a generalized system. To address this issue, we propose the Generalized Out-of-distribution Fault Diagnosis (GOOFD) framework to integrate diagnosis subtasks, such as fault detection, fault classification, and novel fault diagnosis. Additionally, a unified fault diagnosis method based on internal contrastive learning is put forward to underpin the proposed generalized framework. The method extracts features utilizing the internal contrastive learning technique and then recognizes the outliers based on the Mahalanobis distance. Experiments are conducted on a simulated benchmark dataset as well as two practical process datasets to evaluate the proposed framework. As demonstrated in the experiments, the proposed method achieves better performance compared with several existing techniques and thus verifies the effectiveness of the proposed framework.

Autonomous racing control is a challenging research problem as vehicles are pushed to their limits of handling to achieve an optimal lap time; therefore, vehicles exhibit highly nonlinear and complex dynamics. Difficult-to-model effects, such as drifting, aerodynamics, chassis weight transfer, and suspension can lead to infeasible and suboptimal trajectories. While offline planning allows optimizing a full reference trajectory for the minimum lap time objective, such modeling discrepancies are particularly detrimental when using offline planning, as planning model errors compound with controller modeling errors. Gaussian Process Regression (GPR) can compensate for modeling errors. However, previous works primarily focus on modeling error in real-time control without consideration for how the model used in offline planning can affect the overall performance. In this work, we propose a double-GPR error compensation algorithm to reduce model uncertainties; specifically, we compensate both the planner's model and controller's model with two respective GPR-based error compensation functions. Furthermore, we design an iterative framework to re-collect error-rich data using the racing control system. We test our method in the high-fidelity racing simulator Gran Turismo Sport (GTS); we find that our iterative, double-GPR compensation functions improve racing performance and iteration stability in comparison to a single compensation function applied merely for real-time control.

Performing agile navigation with four-legged robots is a challenging task due to the highly dynamic motions, contacts with various parts of the robot, and the limited field of view of the perception sensors. In this paper, we propose a fully-learned approach to train such robots and conquer scenarios that are reminiscent of parkour challenges. The method involves training advanced locomotion skills for several types of obstacles, such as walking, jumping, climbing, and crouching, and then using a high-level policy to select and control those skills across the terrain. Thanks to our hierarchical formulation, the navigation policy is aware of the capabilities of each skill, and it will adapt its behavior depending on the scenario at hand. Additionally, a perception module is trained to reconstruct obstacles from highly occluded and noisy sensory data and endows the pipeline with scene understanding. Compared to previous attempts, our method can plan a path for challenging scenarios without expert demonstration, offline computation, a priori knowledge of the environment, or taking contacts explicitly into account. While these modules are trained from simulated data only, our real-world experiments demonstrate successful transfer on hardware, where the robot navigates and crosses consecutive challenging obstacles with speeds of up to two meters per second. The supplementary video can be found on the project website: //sites.google.com/leggedrobotics.com/agile-navigation

Depth completion is the task of recovering dense depth maps from sparse ones, usually with the help of color images. Existing image-guided methods perform well on daytime depth perception self-driving benchmarks, but struggle in nighttime scenarios with poor visibility and complex illumination. To address these challenges, we propose a simple yet effective framework called LDCNet. Our key idea is to use Recurrent Inter-Convolution Differencing (RICD) and Illumination-Affinitive Intra-Convolution Differencing (IAICD) to enhance the nighttime color images and reduce the negative effects of the varying illumination, respectively. RICD explicitly estimates global illumination by differencing two convolutions with different kernels, treating the small-kernel-convolution feature as the center of the large-kernel-convolution feature in a new perspective. IAICD softly alleviates local relative light intensity by differencing a single convolution, where the center is dynamically aggregated based on neighboring pixels and the estimated illumination map in RICD. On both nighttime depth completion and depth estimation tasks, extensive experiments demonstrate the effectiveness of our LDCNet, reaching the state of the art.

Optimal Multi-Robot Path Planning (MRPP) has garnered significant attention due to its many applications in domains including warehouse automation, transportation, and swarm robotics. Current MRPP solvers can be divided into reduction-based, search-based, and rule-based categories, each with their strengths and limitations. Regardless of the methodology, however, the issue of handling dense MRPP instances remains a significant challenge, where existing approaches generally demonstrate a dichotomy regarding solution optimality and efficiency. This study seeks to bridge the gap in optimal MRPP resolution for dense, highly-entangled scenarios, with potential applications to high-density storage systems and traffic congestion control. Toward that goal, we analyze the behaviors of SOTA MRPP algorithms in dense settings and develop two hybrid algorithms leveraging the strengths of existing SOTA algorithms: DCBS (database-accelerated enhanced conflict-based search) and SCBS (sparsified enhanced conflict-based search). Experimental validations demonstrate that DCBS and SCBS deliver a significant reduction in computational time compared to existing bounded-suboptimal methods and improve solution quality compared to existing rule-based methods, achieving a desirable balance between computational efficiency and solution optimality. As a result, DCBS and SCBS are particularly suitable for quickly computing good-quality solutions for multi-robot routing in dense settings

Large-scale driving datasets such as Waymo Open Dataset and nuScenes substantially accelerate autonomous driving research, especially for perception tasks such as 3D detection and trajectory forecasting. Since the driving logs in these datasets contain HD maps and detailed object annotations which accurately reflect the real-world complexity of traffic behaviors, we can harvest a massive number of complex traffic scenarios and recreate their digital twins in simulation. Compared to the hand-crafted scenarios often used in existing simulators, data-driven scenarios collected from the real world can facilitate many research opportunities in machine learning and autonomous driving. In this work, we present ScenarioNet, an open-source platform for large-scale traffic scenario modeling and simulation. ScenarioNet defines a unified scenario description format and collects a large-scale repository of real-world traffic scenarios from the heterogeneous data in various driving datasets including Waymo, nuScenes, Lyft L5, and nuPlan datasets. These scenarios can be further replayed and interacted with in multiple views from Bird-Eye-View layout to realistic 3D rendering in MetaDrive simulator. This provides a benchmark for evaluating the safety of autonomous driving stacks in simulation before their real-world deployment. We further demonstrate the strengths of ScenarioNet on large-scale scenario generation, imitation learning, and reinforcement learning in both single-agent and multi-agent settings. Code, demo videos, and website are available at //metadriverse.github.io/scenarionet.

Spectral Clustering is one of the most traditional methods to solve segmentation problems. Based on Normalized Cuts, it aims at partitioning an image using an objective function defined by a graph. Despite their mathematical attractiveness, spectral approaches are traditionally neglected by the scientific community due to their practical issues and underperformance. In this paper, we adopt a sparse graph formulation based on the inclusion of extra nodes to a simple grid graph. While the grid encodes the pixel spatial disposition, the extra nodes account for the pixel color data. Applying the original Normalized Cuts algorithm to this graph leads to a simple and scalable method for spectral image segmentation, with an interpretable solution. Our experiments also demonstrate that our proposed methodology over performs traditional spectral algorithms for segmentation.

Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.

We study the problem of named entity recognition (NER) from electronic medical records, which is one of the most fundamental and critical problems for medical text mining. Medical records which are written by clinicians from different specialties usually contain quite different terminologies and writing styles. The difference of specialties and the cost of human annotation makes it particularly difficult to train a universal medical NER system. In this paper, we propose a label-aware double transfer learning framework (La-DTL) for cross-specialty NER, so that a medical NER system designed for one specialty could be conveniently applied to another one with minimal annotation efforts. The transferability is guaranteed by two components: (i) we propose label-aware MMD for feature representation transfer, and (ii) we perform parameter transfer with a theoretical upper bound which is also label aware. We conduct extensive experiments on 12 cross-specialty NER tasks. The experimental results demonstrate that La-DTL provides consistent accuracy improvement over strong baselines. Besides, the promising experimental results on non-medical NER scenarios indicate that La-DTL is potential to be seamlessly adapted to a wide range of NER tasks.

北京阿比特科技有限公司