亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In most urban and suburban areas, pole-like structures such as tree trunks or utility poles are ubiquitous. These structural landmarks are very useful for the localization of autonomous vehicles given their geometrical locations in maps and measurements from sensors. In this work, we aim at creating an accurate map for autonomous vehicles or robots with pole-like structures as the dominant localization landmarks, hence called pole-map. In contrast to the previous pole-based mapping or localization methods, we exploit the semantics of pole-like structures. Specifically, semantic segmentation is achieved by a new mask-range transformer network in a mask-classfication paradigm. With the semantics extracted for the pole-like structures in each frame, a multi-layer semantic pole-map is created by aggregating the detected pole-like structures from all frames. Given the semantic pole-map, we propose a semantic particle-filtering localization scheme for vehicle localization. Theoretically, we have analyzed why the semantic information can benefit the particle-filter localization, and empirically it is validated on the public SemanticKITTI dataset that the particle-filtering localization with semantics achieves much better performance than the counterpart without semantics when each particle's odometry prediction and/or the online observation is subject to uncertainties at significant levels.

相關內容

The labor-intensive annotation process of semantic segmentation datasets is often prone to errors, since humans struggle to label every pixel correctly. We study algorithms to automatically detect such annotation errors, in particular methods to score label quality, such that the images with the lowest scores are least likely to be correctly labeled. This helps prioritize what data to review in order to ensure a high-quality training/evaluation dataset, which is critical in sensitive applications such as medical imaging and autonomous vehicles. Widely applicable, our label quality scores rely on probabilistic predictions from a trained segmentation model -- any model architecture and training procedure can be utilized. Here we study 7 different label quality scoring methods used in conjunction with a DeepLabV3+ or a FPN segmentation model to detect annotation errors in a version of the SYNTHIA dataset. Precision-recall evaluations reveal a score -- the soft-minimum of the model-estimated likelihoods of each pixel's annotated class -- that is particularly effective to identify images that are mislabeled, across multiple types of annotation error.

This work builds upon a well-established research tradition on modal logics of awareness. One of its aims is to export tools and techniques to other areas within modal logic. To this end, we illustrate a number of significant bridges with abstract argumentation, justification logics, the epistemic logic of knowing-what and deontic logic, where basic notions and definitional concepts can be expressed in terms of the awareness operator combined with the box modality. Furthermore, these conceptual links point to interesting properties of awareness sets beyond those standardly assumed in awareness logics, i.e. positive and negative introspection. We show that the properties we list are characterised by corresponding canonical formulas, so as to obtain a series of off-the-shelf axiomatisations for them. As a second focus, we investigate the general dynamics of this framework by means of event models. Of specific interest in this context is to know under which conditions, given a model that satisfies some property, the update with an event model keeps it within the intended class. This is known as the closure problem in general dynamic epistemic logics. As a main contribution, we prove a number of closure theorems providing sufficient conditions for the preservation of our properties. Again, these results enable us to axiomatize our dynamic logics by means of reduction axioms.

With the popularity of deep neural networks (DNNs), model interpretability is becoming a critical concern. Many approaches have been developed to tackle the problem through post-hoc analysis, such as explaining how predictions are made or understanding the meaning of neurons in middle layers. Nevertheless, these methods can only discover the patterns or rules that naturally exist in models. In this work, rather than relying on post-hoc schemes, we proactively instill knowledge to alter the representation of human-understandable concepts in hidden layers. Specifically, we use a hierarchical tree of semantic concepts to store the knowledge, which is leveraged to regularize the representations of image data instances while training deep models. The axes of the latent space are aligned with the semantic concepts, where the hierarchical relations between concepts are also preserved. Experiments on real-world image datasets show that our method improves model interpretability, showing better disentanglement of semantic concepts, without negatively affecting model classification performance.

Recent developments in the Internet of Things (IoT) and real-time applications, have led to the unprecedented growth in the connected devices and their generated data. Traditionally, this sensor data is transferred and processed at the cloud, and the control signals are sent back to the relevant actuators, as part of the IoT applications. This cloud-centric IoT model, resulted in increased latencies and network load, and compromised privacy. To address these problems, Fog Computing was coined by Cisco in 2012, a decade ago, which utilizes proximal computational resources for processing the sensor data. Ever since its proposal, fog computing has attracted significant attention and the research fraternity focused at addressing different challenges such as fog frameworks, simulators, resource management, placement strategies, quality of service aspects, fog economics etc. However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be utilized in realizing interesting IoT applications. In the literature, we only see pilot case studies and small-scale testbeds, and utilization of simulators for demonstrating scale of the specified models addressing the respective technical challenges. There are several reasons for this, and most importantly, fog computing did not present a clear business case for the companies and participating individuals yet. This paper summarizes the technical, non-functional and economic challenges, which have been posing hurdles in adopting fog computing, by consolidating them across different clusters. The paper also summarizes the relevant academic and industrial contributions in addressing these challenges and provides future research directions in realizing real-time fog computing applications, also considering the emerging trends such as federated learning and quantum computing.

Ultrasound imaging is a commonly used modality for several diagnostic and therapeutic procedures. However, the diagnosis by ultrasound relies heavily on the quality of images assessed manually by sonographers, which diminishes the objectivity of the diagnosis and makes it operator-dependent. The supervised learning-based methods for automated quality assessment require manually annotated datasets, which are highly labour-intensive to acquire. These ultrasound images are low in quality and suffer from noisy annotations caused by inter-observer perceptual variations, which hampers learning efficiency. We propose an UnSupervised UltraSound image Quality assessment Network, US2QNet, that eliminates the burden and uncertainty of manual annotations. US2QNet uses the variational autoencoder embedded with the three modules, pre-processing, clustering and post-processing, to jointly enhance, extract, cluster and visualize the quality feature representation of ultrasound images. The pre-processing module uses filtering of images to point the network's attention towards salient quality features, rather than getting distracted by noise. Post-processing is proposed for visualizing the clusters of feature representations in 2D space. We validated the proposed framework for quality assessment of the urinary bladder ultrasound images. The proposed framework achieved 78% accuracy and superior performance to state-of-the-art clustering methods.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics.

We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.

北京阿比特科技有限公司