亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by the need for the rigorous analysis of the numerical stability of variational least-squares kernel-based methods for solving second-order elliptic partial differential equations, we provide previously lacking stability inequalities. This fills a significant theoretical gap in the previous work [Comput. Math. Appl. 103 (2021) 1-11], which provided error estimates based on a conjecture on the stability. With the stability estimate now rigorously proven, we complete the theoretical foundations and compare the convergence behavior to the proven rates. Furthermore, we establish another stability inequality involving weighted-discrete norms, and provide a theoretical proof demonstrating that the exact quadrature weights are not necessary for the weighted least-squares kernel-based collocation method to converge. Our novel theoretical insights are validated by numerical examples, which showcase the relative efficiency and accuracy of these methods on data sets with large mesh ratios. The results confirm our theoretical predictions regarding the performance of variational least-squares kernel-based method, least-squares kernel-based collocation method, and our new weighted least-squares kernel-based collocation method. Most importantly, our results demonstrate that all methods converge at the same rate, validating the convergence theory of weighted least-squares in our proven theories.

相關內容

This work deals with developing two fast randomized algorithms for computing the generalized tensor singular value decomposition (GTSVD) based on the tubal product (t-product). The random projection method is utilized to compute the important actions of the underlying data tensors and use them to get small sketches of the original data tensors, which are easier to be handled. Due to the small size of the sketch tensors, deterministic approaches are applied to them to compute their GTSVDs. Then, from the GTSVD of the small sketch tensors, the GTSVD of the original large-scale data tensors is recovered. Some experiments are conducted to show the effectiveness of the proposed approach.

This paper introduces a new numerical scheme for a system that includes evolution equations describing a perfect plasticity model with a time-dependent yield surface. We demonstrate that the solution to the proposed scheme is stable under suitable norms. Moreover, the stability leads to the existence of an exact solution, and we also prove that the solution to the proposed scheme converges strongly to the exact solution under suitable norms.

We present a numerical scheme for the solution of the initial-value problem for the ``bad'' Boussinesq equation. The accuracy of the scheme is tested by comparison with exact soliton solutions as well as with recently obtained asymptotic formulas for the solution.

Random effect models for time-to-event data, also known as frailty models, provide a conceptually appealing way of quantifying association between survival times and of representing heterogeneities resulting from factors which may be difficult or impossible to measure. In the literature, the random effect is usually assumed to have a continuous distribution. However, in some areas of application, discrete frailty distributions may be more appropriate. The present paper is about the implementation and interpretation of the Addams family of discrete frailty distributions. We propose methods of estimation for this family of densities in the context of shared frailty models for the hazard rates for case I interval-censored data. Our optimization framework allows for stratification of random effect distributions by covariates. We highlight interpretational advantages of the Addams family of discrete frailty distributions and the K-point distribution as compared to other frailty distributions. A unique feature of the Addams family and the K-point distribution is that the support of the frailty distribution depends on its parameters. This feature is best exploited by imposing a model on the distributional parameters, resulting in a model with non-homogeneous covariate effects that can be analysed using standard measures such as the hazard ratio. Our methods are illustrated with applications to multivariate case I interval-censored infection data.

Symplectic integrators are widely implemented numerical integrators for Hamiltonian mechanics, which preserve the Hamiltonian structure (symplecticity) of the system. Although the symplectic integrator does not conserve the energy of the system, it is well known that there exists a conserving modified Hamiltonian, called the shadow Hamiltonian. For the Nambu mechanics, which is a kind of generalized Hamiltonian mechanics, we can also construct structure-preserving integrators by the same procedure used to construct the symplectic integrators. In the structure-preserving integrator, however, the existence of shadow Hamiltonians is nontrivial. This is because the Nambu mechanics is driven by multiple Hamiltonians and it is nontrivial whether the time evolution by the integrator can be cast into the Nambu mechanical time evolution driven by multiple shadow Hamiltonians. In this paper we present a general procedure to calculate the shadow Hamiltonians of structure-preserving integrators for Nambu mechanics, and give an example where the shadow Hamiltonians exist. This is the first attempt to determine the concrete forms of the shadow Hamiltonians for a Nambu mechanical system. We show that the fundamental identity, which corresponds to the Jacobi identity in Hamiltonian mechanics, plays an important role in calculating the shadow Hamiltonians using the Baker-Campbell-Hausdorff formula. It turns out that the resulting shadow Hamiltonians have indefinite forms depending on how the fundamental identities are used. This is not a technical artifact, because the exact shadow Hamiltonians obtained independently have the same indefiniteness.

We consider the task of constructing confidence intervals with differential privacy. We propose two private variants of the non-parametric bootstrap, which privately compute the median of the results of multiple "little" bootstraps run on partitions of the data and give asymptotic bounds on the coverage error of the resulting confidence intervals. For a fixed differential privacy parameter $\epsilon$, our methods enjoy the same error rates as that of the non-private bootstrap to within logarithmic factors in the sample size $n$. We empirically validate the performance of our methods for mean estimation, median estimation, and logistic regression with both real and synthetic data. Our methods achieve similar coverage accuracy to existing methods (and non-private baselines) while providing notably shorter ($\gtrsim 10$ times) confidence intervals than previous approaches.

Recently, Cronie et al. (2024) introduced the notion of cross-validation for point processes and a new statistical methodology called Point Process Learning (PPL). In PPL one splits a point process/pattern into a training and a validation set, and then predicts the latter from the former through a parametrised Papangelou conditional intensity. The model parameters are estimated by minimizing a point process prediction error; this notion was introduced as the second building block of PPL. It was shown that PPL outperforms the state-of-the-art in both kernel intensity estimation and estimation of the parameters of the Gibbs hard-core process. In the latter case, the state-of-the-art was represented by pseudolikelihood estimation. In this paper we study PPL in relation to Takacs-Fiksel estimation, of which pseudolikelihood is a special case. We show that Takacs-Fiksel estimation is a special case of PPL in the sense that PPL with a specific loss function asymptotically reduces to Takacs-Fiksel estimation if we let the cross-validation regime tend to leave-one-out cross-validation. Moreover, PPL involves a certain type of hyperparameter given by a weight function which ensures that the prediction errors have expectation zero if and only if we have the correct parametrisation. We show that the weight function takes an explicit but intractable form for general Gibbs models. Consequently, we propose different approaches to estimate the weight function in practice. In order to assess how the general PPL setup performs in relation to its special case Takacs-Fiksel estimation, we conduct a simulation study where we find that for common Gibbs models we can find loss functions and hyperparameters so that PPL typically outperforms Takacs-Fiksel estimation significantly in terms of mean square error. Here, the hyperparameters are the cross-validation parameters and the weight function estimate.

In this paper, to address the optimization problem on a compact matrix manifold, we introduce a novel algorithmic framework called the Transformed Gradient Projection (TGP) algorithm, using the projection onto this compact matrix manifold. Compared with the existing algorithms, the key innovation in our approach lies in the utilization of a new class of search directions and various stepsizes, including the Armijo, nonmonotone Armijo, and fixed stepsizes, to guide the selection of the next iterate. Our framework offers flexibility by encompassing the classical gradient projection algorithms as special cases, and intersecting the retraction-based line-search algorithms. Notably, our focus is on the Stiefel or Grassmann manifold, revealing that many existing algorithms in the literature can be seen as specific instances within our proposed framework, and this algorithmic framework also induces several new special cases. Then, we conduct a thorough exploration of the convergence properties of these algorithms, considering various search directions and stepsizes. To achieve this, we extensively analyze the geometric properties of the projection onto compact matrix manifolds, allowing us to extend classical inequalities related to retractions from the literature. Building upon these insights, we establish the weak convergence, convergence rate, and global convergence of TGP algorithms under three distinct stepsizes. In cases where the compact matrix manifold is the Stiefel or Grassmann manifold, our convergence results either encompass or surpass those found in the literature. Finally, through a series of numerical experiments, we observe that the TGP algorithms, owing to their increased flexibility in choosing search directions, outperform classical gradient projection and retraction-based line-search algorithms in several scenarios.

We detail for the first time a complete explicit description of the quasi-cyclic structure of all classical finite generalized quadrangles. Using these descriptions we construct families of quasi-cyclic LDPC codes derived from the point-line incidence matrix of the quadrangles by explicitly calculating quasi-cyclic generator and parity check matrices for these codes. This allows us to construct parity check and generator matrices of all such codes of length up to 400000. These codes cover a wide range of transmission rates, are easy and fast to implement and perform close to Shannon's limit with no visible error floors. We also include some performance data for these codes. Furthermore, we include a complete explicit description of the quasi-cyclic structure of the point-line and point-hyperplane incidences of the finite projective and affine spaces.

We consider the application of the generalized Convolution Quadrature (gCQ) to approximate the solution of an important class of sectorial problems. The gCQ is a generalization of Lubich's Convolution Quadrature (CQ) that allows for variable steps. The available stability and convergence theory for the gCQ requires non realistic regularity assumptions on the data, which do not hold in many applications of interest, such as the approximation of subdiffusion equations. It is well known that for non smooth enough data the original CQ, with uniform steps, presents an order reduction close to the singularity. We generalize the analysis of the gCQ to data satisfying realistic regularity assumptions and provide sufficient conditions for stability and convergence on arbitrary sequences of time points. We consider the particular case of graded meshes and show how to choose them optimally, according to the behaviour of the data. An important advantage of the gCQ method is that it allows for a fast and memory reduced implementation. We describe how the fast and oblivious gCQ can be implemented and illustrate our theoretical results with several numerical experiments.

北京阿比特科技有限公司