亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Functional data analysis is typically performed in two steps: first, functionally representing discrete observations, and then applying functional methods to the so-represented data. The initial choice of a functional representation may have a significant impact on the second phase of the analysis, as shown in recent research, where data-driven spline bases outperformed the predefined rigid choice of functional representation. The method chooses an initial functional basis by an efficient placement of the knots using a simple machine-learning algorithm. The approach does not apply directly when the data are defined on domains of a higher dimension than one such as, for example, images. The reason is that in higher dimensions the convenient and numerically efficient spline bases are obtained as tensor bases from 1D spline bases that require knots that are located on a lattice. This does not allow for a flexible knot placement that was fundamental for the 1D approach. The goal of this research is to propose two modified approaches that circumvent the problem by coding the irregular knot selection into their densities and utilizing these densities through the topology of the spaces of splines. This allows for regular grids for the knots and thus facilitates using the spline tensor bases. It is tested on 1D data showing that its performance is comparable to or better than the previous methods.

相關內容

With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approach

Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or "synchronizing" the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relational to reason about contextual refinement and equivalence of higher-order programs written in a rich language with higher-order local state and impredicative polymorphism. Finally, we demonstrate the usefulness of our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework.

A mixture of multivariate Poisson-log normal factor analyzers is introduced by imposing constraints on the covariance matrix, which resulted in flexible models for clustering purposes. In particular, a class of eight parsimonious mixture models based on the mixtures of factor analyzers model are introduced. Variational Gaussian approximation is used for parameter estimation, and information criteria are used for model selection. The proposed models are explored in the context of clustering discrete data arising from RNA sequencing studies. Using real and simulated data, the models are shown to give favourable clustering performance. The GitHub R package for this work is available at //github.com/anjalisilva/mixMPLNFA and is released under the open-source MIT license.

We investigate the dimension-parametric complexity of the reachability problem in vector addition systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to now, the problem is known to be $\mathcal{F}_k$-hard for VASS of dimension $3k+2$ (the complexity class $\mathcal{F}_k$ corresponds to the $k$th level of the fast-growing hierarchy), and no essentially better bound is known for pushdown VASS. We provide a new construction that improves the lower bound for VASS: $\mathcal{F}_k$-hardness in dimension $2k+3$. Furthermore, building on our new insights we show a new lower bound for pushdown VASS: $\mathcal{F}_k$-hardness in dimension $\frac k 2 + 4$. This dimension-parametric lower bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown) complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is Ackermann-complete).

Nonresponse after probability sampling is a universal challenge in survey sampling, often necessitating adjustments to mitigate sampling and selection bias simultaneously. This study explored the removal of bias and effective utilization of available information, not just in nonresponse but also in the scenario of data integration, where summary statistics from other data sources are accessible. We reformulate these settings within a two-step monotone missing data framework, where the first step of missingness arises from sampling and the second originates from nonresponse. Subsequently, we derive the semiparametric efficiency bound for the target parameter. We also propose adaptive estimators utilizing methods of moments and empirical likelihood approaches to attain the lower bound. The proposed estimator exhibits both efficiency and double robustness. However, attaining efficiency with an adaptive estimator requires the correct specification of certain working models. To reinforce robustness against the misspecification of working models, we extend the property of double robustness to multiple robustness by proposing a two-step empirical likelihood method that effectively leverages empirical weights. A numerical study is undertaken to investigate the finite-sample performance of the proposed methods. We further applied our methods to a dataset from the National Health and Nutrition Examination Survey data by efficiently incorporating summary statistics from the National Health Interview Survey data.

Parameterized convex minorant (PCM) method is proposed for the approximation of the objective function in amortized optimization. In the proposed method, the objective function approximator is expressed by the sum of a PCM and a nonnegative gap function, where the objective function approximator is bounded from below by the PCM convex in the optimization variable. The proposed objective function approximator is a universal approximator for continuous functions, and the global minimizer of the PCM attains the global minimum of the objective function approximator. Therefore, the global minimizer of the objective function approximator can be obtained by a single convex optimization. As a realization of the proposed method, extended parameterized log-sum-exp network is proposed by utilizing a parameterized log-sum-exp network as the PCM. Numerical simulation is performed for parameterized non-convex objective function approximation and for learning-based nonlinear model predictive control to demonstrate the performance and characteristics of the proposed method. The simulation results support that the proposed method can be used to learn objective functions and to find a global minimizer reliably and quickly by using convex optimization algorithms.

Sparse matrix representations are ubiquitous in computational science and machine learning, leading to significant reductions in compute time, in comparison to dense representation, for problems that have local connectivity. The adoption of sparse representation in leading ML frameworks such as PyTorch is incomplete, however, with support for both automatic differentiation and GPU acceleration missing. In this work, we present an implementation of a CSR-based sparse matrix wrapper for PyTorch with CUDA acceleration for basic matrix operations, as well as automatic differentiability. We also present several applications of the resulting sparse kernels to optimization problems, demonstrating ease of implementation and performance measurements versus their dense counterparts.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司