亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Intractable is the problem of finding two link-disjoint paths of minimal cost if the path cost is limited since it can be a special case of the partition problem. In optical networks, this limit can be introduced by the signal modulation reach. Even without this limit, the existing literature suggested the problem intractable because of the spectrum continuity and contiguity constraints, but we show that the problem can be solved exactly with the recently-proposed generic Dijkstra algorithm over a polynomially-bounded search space, thus proving the problem tractable.

相關內容

Many data symmetries can be described in terms of group equivariance and the most common way of encoding group equivariances in neural networks is by building linear layers that are group equivariant. In this work we investigate whether equivariance of a network implies that all layers are equivariant. On the theoretical side we find cases where equivariance implies layerwise equivariance, but also demonstrate that this is not the case generally. Nevertheless, we conjecture that CNNs that are trained to be equivariant will exhibit layerwise equivariance and explain how this conjecture is a weaker version of the recent permutation conjecture by Entezari et al. [2022]. We perform quantitative experiments with VGG-nets on CIFAR10 and qualitative experiments with ResNets on ImageNet to illustrate and support our theoretical findings. These experiments are not only of interest for understanding how group equivariance is encoded in ReLU-networks, but they also give a new perspective on Entezari et al.'s permutation conjecture as we find that it is typically easier to merge a network with a group-transformed version of itself than merging two different networks.

The expressivity of Graph Neural Networks (GNNs) can be entirely characterized by appropriate fragments of the first-order logic. Namely, any query of the two variable fragment of graded modal logic (GC2) interpreted over labeled graphs can be expressed using a GNN whose size depends only on the depth of the query. As pointed out by [Barcelo & Al., 2020, Grohe, 2021], this description holds for a family of activation functions, leaving the possibility for a hierarchy of logics expressible by GNNs depending on the chosen activation function. In this article, we show that such hierarchy indeed exists by proving that GC2 queries cannot be expressed by GNNs with polynomial activation functions. This implies a separation between polynomial and popular non-polynomial activations (such as Rectified Linear Units) and answers an open question formulated by [Grohe, 2021].

This paper considers the problem of robust iterative Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Iterative methods are known to improve smoothed estimates but are not guaranteed to converge, motivating the development of more robust versions of the algorithms. The aim of this article is to present Levenberg-Marquardt (LM) and line-search extensions of the classical iterated extended Kalman smoother (IEKS) as well as the iterated posterior linearisation smoother (IPLS). The IEKS has previously been shown to be equivalent to the Gauss-Newton (GN) method. We derive a similar GN interpretation for the IPLS. Furthermore, we show that an LM extension for both iterative methods can be achieved with a simple modification of the smoothing iterations, enabling algorithms with efficient implementations. Our numerical experiments show the importance of robust methods, in particular for the IEKS-based smoothers. The computationally expensive IPLS-based smoothers are naturally robust but can still benefit from further regularisation.

We present a novel clustering algorithm, visClust, that is based on lower dimensional data representations and visual interpretation. Thereto, we design a transformation that allows the data to be represented by a binary integer array enabling the use of image processing methods to select a partition. Qualitative and quantitative analyses measured in accuracy and an adjusted Rand-Index show that the algorithm performs well while requiring low runtime and RAM. We compare the results to 6 state-of-the-art algorithms with available code, confirming the quality of visClust by superior performance in most experiments. Moreover, the algorithm asks for just one obligatory input parameter while allowing optimization via optional parameters. The code is made available on GitHub and straightforward to use.

The field of 'explainable' artificial intelligence (XAI) has produced highly cited methods that seek to make the decisions of complex machine learning (ML) methods 'understandable' to humans, for example by attributing 'importance' scores to input features. Yet, a lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method and has also so far hindered the theoretical verification and empirical validation of XAI methods. This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies. Here, we craft benchmark datasets for three different non-linear classification scenarios, in which the important class-conditional features are known by design, serving as ground truth explanations. Using novel quantitative metrics, we benchmark the explanation performance of a wide set of XAI methods across three deep learning model architectures. We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods. Moreover, we demonstrate that explanations derived from different model architectures can be vastly different; thus, prone to misinterpretation even under controlled conditions.

Current approaches to generic segmentation start by creating a hierarchy of nested image partitions and then specifying a segmentation from it. Our first contribution is to describe several ways, most of them new, for specifying segmentations using the hierarchy elements. Then, we consider the best hierarchy-induced segmentation specified by a limited number of hierarchy elements. We focus on a common quality measure for binary segmentations, the Jaccard index (also known as IoU). Optimizing the Jaccard index is highly non-trivial, and yet we propose an efficient approach for doing exactly that. This way we get algorithm-independent upper bounds on the quality of any segmentation created from the hierarchy. We found that the obtainable segmentation quality varies significantly depending on the way that the segments are specified by the hierarchy elements, and that representing a segmentation with only a few hierarchy elements is often possible. (Code is available).

Sample selection models represent a common methodology for correcting bias induced by data missing not at random. It is well known that these models are not empirically identifiable without exclusion restrictions. In other words, some variables predictive of missingness do not affect the outcome model of interest. The drive to establish this requirement often leads to the inclusion of irrelevant variables in the model. A recent proposal uses adaptive LASSO to circumvent this problem, but its performance depends on the so-called covariance assumption, which can be violated in small to moderate samples. Additionally, there are no tools yet for post-selection inference for this model. To address these challenges, we propose two families of spike-and-slab priors to conduct Bayesian variable selection in sample selection models. These prior structures allow for constructing a Gibbs sampler with tractable conditionals, which is scalable to the dimensions of practical interest. We illustrate the performance of the proposed methodology through a simulation study and present a comparison against adaptive LASSO and stepwise selection. We also provide two applications using publicly available real data. An implementation and code to reproduce the results in this paper can be found at //github.com/adam-iqbal/selection-spike-slab

This research investigates the numerical approximation of the two-dimensional convection-dominated singularly perturbed problem on square, circular, and elliptic domains. Singularly perturbed boundary value problems present a significant challenge due to the presence of sharp boundary layers in their solutions. Additionally, the considered domain exhibits characteristic points, giving rise to a degenerate boundary layer problem. The stiffness of the problem is attributed to the sharp singular layers, which can result in substantial computational errors if not appropriately addressed. Traditional numerical methods typically require extensive mesh refinements near the boundary to achieve accurate solutions, which can be computationally expensive. To address the challenges posed by singularly perturbed problems, we employ physics-informed neural networks (PINNs). However, PINNs may struggle with rapidly varying singularly perturbed solutions over a small domain region, leading to inadequate resolution and potentially inaccurate or unstable results. To overcome this limitation, we introduce a semi-analytic method that augments PINNs with singular layers or corrector functions. Through our numerical experiments, we demonstrate significant improvements in both accuracy and stability, thus demonstrating the effectiveness of our proposed approach.

Many imaging science tasks can be modeled as a discrete linear inverse problem. Solving linear inverse problems is often challenging, with ill-conditioned operators and potentially non-unique solutions. Embedding prior knowledge, such as smoothness, into the solution can overcome these challenges. In this work, we encode prior knowledge using a non-negative patch dictionary, which effectively learns a basis from a training set of natural images. In this dictionary basis, we desire solutions that are non-negative and sparse (i.e., contain many zero entries). With these constraints, standard methods for solving discrete linear inverse problems are not directly applicable. One such approach is the modified residual norm steepest descent (MRNSD), which produces non-negative solutions but does not induce sparsity. In this paper, we provide two methods based on MRNSD that promote sparsity. In our first method, we add an $\ell_1$-regularization term with a new, optimal step size. In our second method, we propose a new non-negative, sparsity-promoting mapping of the solution. We compare the performance of our proposed methods on a number of numerical experiments, including deblurring, image completion, computer tomography, and superresolution. Our results show that these methods effectively solve discrete linear inverse problems with non-negativity and sparsity constraints.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司