亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the proliferation of large pre-trained language models (PLMs), fine-tuning all model parameters becomes increasingly inefficient, particularly when dealing with numerous downstream tasks that entail substantial training and storage costs. Several approaches aimed at achieving parameter-efficient fine-tuning (PEFT) have been proposed. Among them, Low-Rank Adaptation (LoRA) stands out as an archetypal method, incorporating trainable rank decomposition matrices into each target module. Nevertheless, LoRA does not consider the varying importance of each layer. To address these challenges, we introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process, considering both the temporary magnitude of weights and the accumulated statistics of the input to any given layer. We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.

相關內容

Parameter-efficient fine-tuning (PEFT) enables efficient adaptation of pre-trained language models (PLMs) to specific tasks. By tuning only a minimal set of (extra) parameters, PEFT achieves performance that is comparable to standard fine-tuning. However, despite its prevalent use, the security implications of PEFT remain largely unexplored. In this paper, we take the initial steps and present PETA, a novel trojan attack that compromises the weights of PLMs by accounting for downstream adaptation through bilevel optimization: the upper-level objective embeds the backdoor into a model while the lower-level objective simulates PEFT to both retain the PLM's task-specific performance and ensure that the backdoor persists after fine-tuning. With extensive evaluation across a variety of downstream tasks and trigger designs, we demonstrate PETA's effectiveness in terms of both attack success rate and clean accuracy, even when the attacker does not have full knowledge of the victim user's training process.

Diffusion model-based low-light image enhancement methods rely heavily on paired training data, leading to limited extensive application. Meanwhile, existing unsupervised methods lack effective bridging capabilities for unknown degradation. To address these limitations, we propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED. It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains and successfully alleviates the dependence on pairwise training data via zero-reference learning. Specifically, we first design the initial optimization network to preprocess the input image and implement bidirectional constraints between the diffusion model and the initial optimization network through multiple objective functions. Subsequently, the degradation factors of the real-world scene are optimized iteratively to achieve effective light enhancement. In addition, we explore a frequency-domain based and semantically guided appearance reconstruction module that encourages feature alignment of the recovered image at a fine-grained level and satisfies subjective expectations. Finally, extensive experiments demonstrate the superiority of our approach to other state-of-the-art methods and more significant generalization capabilities. We will open the source code upon acceptance of the paper.

In response to the challenges posed by non-independent and identically distributed (non-IID) data and the escalating threat of privacy attacks in Federated Learning (FL), we introduce HyperFedNet (HFN), a novel architecture that incorporates hypernetworks to revolutionize parameter aggregation and transmission in FL. Traditional FL approaches, characterized by the transmission of extensive parameters, not only incur significant communication overhead but also present vulnerabilities to privacy breaches through gradient analysis. HFN addresses these issues by transmitting a concise set of hypernetwork parameters, thereby reducing communication costs and enhancing privacy protection. Upon deployment, the HFN algorithm enables the dynamic generation of parameters for the basic layer of the FL main network, utilizing local database features quantified by embedding vectors as input. Through extensive experimentation, HFN demonstrates superior performance in reducing communication overhead and improving model accuracy compared to conventional FL methods. By integrating the HFN algorithm into the FL framework, HFN offers a solution to the challenges of non-IID data and privacy threats.

Production Machine Learning involves continuous training: hosting multiple versions of models over time, often with many model versions running at once. When model performance does not meet expectations, Machine Learning Engineers (MLEs) debug issues by exploring and analyzing numerous prior versions of code and training data to identify root causes and mitigate problems. Traditional debugging and logging tools often fall short in managing this experimental, multi-version context. FlorDB introduces Multiversion Hindsight Logging, which allows engineers to use the most recent version's logging statements to query past versions, even when older versions logged different data. Log statement propagation enables consistent injection of logging statements into past code versions, regardless of changes to the codebase. Once log statements are propagated across code versions, the remaining challenge in Multiversion Hindsight Logging is to efficiently replay the new log statements based on checkpoints from previous runs. Finally, a coherent user experience is required to help MLEs debug across all versions of code and data. To this end, FlorDB presents a unified relational model for efficient handling of historical queries, offering a comprehensive view of the log history to simplify the exploration of past code iterations. We present a performance evaluation on diverse benchmarks confirming its scalability and the ability to deliver real-time query responses, leveraging query-based filtering and checkpoint-based parallelism for efficient replay.

Free-text rationales play a pivotal role in explainable NLP, bridging the knowledge and reasoning gaps behind a model's decision-making. However, due to the diversity of potential reasoning paths and a corresponding lack of definitive ground truth, their evaluation remains a challenge. Existing evaluation metrics rely on the degree to which a rationale supports a target label, but we find these fall short in evaluating rationales that inadvertently leak the labels. To address this problem, we propose RORA, a Robust free-text Rationale evaluation against label leakage. RORA quantifies the new information supplied by a rationale to justify the label. This is achieved by assessing the conditional V-information \citep{hewitt-etal-2021-conditional} with a predictive family robust against leaky features that can be exploited by a small model. RORA consistently outperforms existing approaches in evaluating human-written, synthetic, or model-generated rationales, particularly demonstrating robustness against label leakage. We also show that RORA aligns well with human judgment, providing a more reliable and accurate measurement across diverse free-text rationales.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

北京阿比特科技有限公司