This work introduces EUvsDisinfo, a multilingual dataset of trustworthy and disinformation articles related to pro-Kremlin themes. It is sourced directly from the debunk articles written by experts leading the EUvsDisinfo project. Our dataset is the largest to-date resource in terms of the overall number of articles and distinct languages. It also provides the largest topical and temporal coverage. Using this dataset, we investigate the dissemination of pro-Kremlin disinformation across different languages, uncovering language-specific patterns targeting specific disinformation topics. We further analyse the evolution of topic distribution over an eight-year period, noting a significant surge in disinformation content before the full-scale invasion of Ukraine in 2022. Lastly, we demonstrate the dataset's applicability in training models to effectively distinguish between disinformation and trustworthy content in multilingual settings.
This research presents a novel multimodal data fusion methodology for pain behavior recognition, integrating statistical correlation analysis with human-centered insights. Our approach introduces two key innovations: 1) integrating data-driven statistical relevance weights into the fusion strategy to effectively utilize complementary information from heterogeneous modalities, and 2) incorporating human-centric movement characteristics into multimodal representation learning for detailed modeling of pain behaviors. Validated across various deep learning architectures, our method demonstrates superior performance and broad applicability. We propose a customizable framework that aligns each modality with a suitable classifier based on statistical significance, advancing personalized and effective multimodal fusion. Furthermore, our methodology provides explainable analysis of multimodal data, contributing to interpretable and explainable AI in healthcare. By highlighting the importance of data diversity and modality-specific representations, we enhance traditional fusion techniques and set new standards for recognizing complex pain behaviors. Our findings have significant implications for promoting patient-centered healthcare interventions and supporting explainable clinical decision-making.
With the progressive advancements in deep graph learning, out-of-distribution (OOD) detection for graph data has emerged as a critical challenge. While the efficacy of auxiliary datasets in enhancing OOD detection has been extensively studied for image and text data, such approaches have not yet been explored for graph data. Unlike Euclidean data, graph data exhibits greater diversity but lower robustness to perturbations, complicating the integration of outliers. To tackle these challenges, we propose the introduction of \textbf{H}ybrid External and Internal \textbf{G}raph \textbf{O}utlier \textbf{E}xposure (HGOE) to improve graph OOD detection performance. Our framework involves using realistic external graph data from various domains and synthesizing internal outliers within ID subgroups to address the poor robustness and presence of OOD samples within the ID class. Furthermore, we develop a boundary-aware OE loss that adaptively assigns weights to outliers, maximizing the use of high-quality OOD samples while minimizing the impact of low-quality ones. Our proposed HGOE framework is model-agnostic and designed to enhance the effectiveness of existing graph OOD detection models. Experimental results demonstrate that our HGOE framework can significantly improve the performance of existing OOD detection models across all 8 real datasets.
Alongside the continuous process of improving AI performance through the development of more sophisticated models, researchers have also focused their attention to the emerging concept of data-centric AI, which emphasizes the important role of data in a systematic machine learning training process. Nonetheless, the development of models has also continued apace. One result of this progress is the development of the Transformer Architecture, which possesses a high level of capability in multiple domains such as Natural Language Processing (NLP), Computer Vision (CV) and Time Series Forecasting (TSF). Its performance is, however, heavily dependent on input data preprocessing and output data evaluation, justifying a data-centric approach to future research. We argue that data-centric AI is essential for training AI models, particularly for transformer-based TSF models efficiently. However, there is a gap regarding the integration of transformer-based TSF and data-centric AI. This survey aims to pin down this gap via the extensive literature review based on the proposed taxonomy. We review the previous research works from a data-centric AI perspective and we intend to lay the foundation work for the future development of transformer-based architecture and data-centric AI.
Federated Learning (FL) in the Internet of Things (IoT) environments can enhance machine learning by utilising decentralised data, but at the same time, it might introduce significant privacy and security concerns due to the constrained nature of IoT devices. This represents a research challenge that we aim to address in this paper. We systematically analysed recent literature to identify privacy threats in FL within IoT environments, and evaluate the defensive measures that can be employed to mitigate these threats. Using a Systematic Literature Review (SLR) approach, we searched five publication databases (Scopus, IEEE Xplore, Wiley, ACM, and Science Direct), collating relevant papers published between 2017 and April 2024, a period which spans from the introduction of FL until now. Guided by the PRISMA protocol, we selected 49 papers to focus our systematic review on. We analysed these papers, paying special attention to the privacy threats and defensive measures -- specifically within the context of IoT -- using inclusion and exclusion criteria tailored to highlight recent advances and critical insights. We identified various privacy threats, including inference attacks, poisoning attacks, and eavesdropping, along with defensive measures such as Differential Privacy and Secure Multi-Party Computation. These defences were evaluated for their effectiveness in protecting privacy without compromising the functional integrity of FL in IoT settings. Our review underscores the necessity for robust and efficient privacy-preserving strategies tailored for IoT environments. Notably, there is a need for strategies against replay, evasion, and model stealing attacks. Exploring lightweight defensive measures and emerging technologies such as blockchain may help improve the privacy of FL in IoT, leading to the creation of FL models that can operate under variable network conditions.
Background: Benchmarking medical decision support algorithms often struggles due to limited access to datasets, narrow prediction tasks, and restricted input modalities. These limitations affect their clinical relevance and performance in high-stakes areas like emergency care, complicating replication, validation, and improvement of benchmarks. Methods: We introduce a dataset based on MIMIC-IV, benchmarking protocol, and initial results for evaluating multimodal decision support in the emergency department (ED). We use diverse data modalities from the first 1.5 hours of patient arrival, including demographics, biometrics, vital signs, lab values, and electrocardiogram waveforms. We analyze 1443 clinical labels across two contexts: predicting diagnoses with ICD-10 codes and forecasting patient deterioration. Results: Our multimodal diagnostic model achieves an AUROC score over 0.8 in a statistically significant manner for 357 out of 1428 conditions, including cardiac issues like myocardial infarction and non-cardiac conditions such as renal disease and diabetes. The deterioration model scores above 0.8 in a statistically significant manner for 13 out of 15 targets, including critical events like cardiac arrest and mechanical ventilation, ICU admission as well as short- and long-term mortality. Incorporating raw waveform data significantly improves model performance, which represents one of the first robust demonstrations of this effect. Conclusions: This study highlights the uniqueness of our dataset, which encompasses a wide range of clinical tasks and utilizes a comprehensive set of features collected early during the emergency after arriving at the ED. The strong performance, as evidenced by high AUROC scores across diagnostic and deterioration targets, underscores the potential of our approach to revolutionize decision-making in acute and emergency medicine.
Behavioural distances of transition systems modelled via coalgebras for endofunctors generalize traditional notions of behavioural equivalence to a quantitative setting, in which states are equipped with a measure of how (dis)similar they are. Endowing transition systems with such distances essentially relies on the ability to lift functors describing the one-step behavior of the transition systems to the category of pseudometric spaces. We consider the category theoretic generalization of the Kantorovich lifting from transportation theory to the case of lifting functors to quantale-valued relations, which subsumes equivalences, preorders and (directed) metrics. We use tools from fibred category theory, which allow one to see the Kantorovich lifting as arising from an appropriate fibred adjunction. Our main contributions are compositionality results for the Kantorovich lifting, where we show that that the lifting of a composed functor coincides with the composition of the liftings. In addition, we describe how to lift distributive laws in the case where one of the two functors is polynomial (with finite coproducts). These results are essential ingredients for adapting up-to-techniques to the case of quantale-valued behavioural distances. Up-to techniques are a well-known coinductive technique for efficiently showing lower bounds for behavioural distances. We illustrate the results of our paper in two case studies.
Synthetic datasets constructed from formal languages allow fine-grained examination of the learning and generalization capabilities of machine learning systems for sequence classification. This article presents a new benchmark for machine learning systems on sequence classification called MLRegTest, which contains training, development, and test sets from 1,800 regular languages. Different kinds of formal languages represent different kinds of long-distance dependencies, and correctly identifying long-distance dependencies in sequences is a known challenge for ML systems to generalize successfully. MLRegTest organizes its languages according to their logical complexity (monadic second order, first order, propositional, or monomial expressions) and the kind of logical literals (string, tier-string, subsequence, or combinations thereof). The logical complexity and choice of literal provides a systematic way to understand different kinds of long-distance dependencies in regular languages, and therefore to understand the capacities of different ML systems to learn such long-distance dependencies. Finally, the performance of different neural networks (simple RNN, LSTM, GRU, transformer) on MLRegTest is examined. The main conclusion is that performance depends significantly on the kind of test set, the class of language, and the neural network architecture.
This survey explores the burgeoning field of role-playing with language models, focusing on their development from early persona-based models to advanced character-driven simulations facilitated by Large Language Models (LLMs). Initially confined to simple persona consistency due to limited model capabilities, role-playing tasks have now expanded to embrace complex character portrayals involving character consistency, behavioral alignment, and overall attractiveness. We provide a comprehensive taxonomy of the critical components in designing these systems, including data, models and alignment, agent architecture and evaluation. This survey not only outlines the current methodologies and challenges, such as managing dynamic personal profiles and achieving high-level persona consistency but also suggests avenues for future research in improving the depth and realism of role-playing applications. The goal is to guide future research by offering a structured overview of current methodologies and identifying potential areas for improvement. Related resources and papers are available at //github.com/nuochenpku/Awesome-Role-Play-Papers.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.