亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spectral risk measures (SRMs) belong to the family of coherent risk measures. A natural estimator for the class of SRMs has the form of L-statistics. Various authors have studied and derived the asymptotic properties of the empirical estimator of SRM. We propose a kernel based estimator of SRM. We investigate the large sample properties of general L-statistics based on i.i.d and dependent observations and apply them to our estimator. We prove that it is strongly consistent and asymptotically normal. We compare the finite sample performance of our proposed kernel estimator with that of several existing estimators for different SRMs using Monte Carlo simulation. We observe that our proposed kernel estimator outperforms all the estimators. Based on our simulation study we have estimated the exponential SRM of four future indices-that is Nikkei 225, Dax, FTSE 100, and Hang Seng. We also discuss the use of SRM in setting initial margin requirements of clearinghouses. Finally we perform a backtesting exercise of SRM.

相關內容

Whilst spectral Graph Neural Networks (GNNs) are theoretically well-founded in the spectral domain, their practical reliance on polynomial approximation implies a profound linkage to the spatial domain. As previous studies rarely examine spectral GNNs from the spatial perspective, their spatial-domain interpretability remains elusive, e.g., what information is essentially encoded by spectral GNNs in the spatial domain? In this paper, to answer this question, we establish a theoretical connection between spectral filtering and spatial aggregation, unveiling an intrinsic interaction that spectral filtering implicitly leads the original graph to an adapted new graph, explicitly computed for spatial aggregation. Both theoretical and empirical investigations reveal that the adapted new graph not only exhibits non-locality but also accommodates signed edge weights to reflect label consistency among nodes. These findings thus highlight the interpretable role of spectral GNNs in the spatial domain and inspire us to rethink graph spectral filters beyond the fixed-order polynomials, which neglect global information. Built upon the theoretical findings, we revisit the state-of-the-art spectral GNNs and propose a novel Spatially Adaptive Filtering (SAF) framework, which leverages the adapted new graph by spectral filtering for an auxiliary non-local aggregation. Notably, our proposed SAF comprehensively models both node similarity and dissimilarity from a global perspective, therefore alleviating persistent deficiencies of GNNs related to long-range dependencies and graph heterophily. Extensive experiments over 13 node classification benchmarks demonstrate the superiority of our proposed framework to the state-of-the-art models.

The early prediction of battery life (EPBL) is vital for enhancing the efficiency and extending the lifespan of lithium batteries. Traditional models with fixed architectures often encounter underfitting or overfitting issues due to the diverse data distributions in different EPBL tasks. An interpretable deep learning model of flexible parallel neural network (FPNN) is proposed, which includes an InceptionBlock, a 3D convolutional neural network (CNN), a 2D CNN, and a dual-stream network. The proposed model effectively extracts electrochemical features from video-like formatted data using the 3D CNN and achieves advanced multi-scale feature abstraction through the InceptionBlock. The FPNN can adaptively adjust the number of InceptionBlocks to flexibly handle tasks of varying complexity in EPBL. The test on the MIT dataset shows that the FPNN model achieves outstanding predictive accuracy in EPBL tasks, with MAPEs of 2.47%, 1.29%, 1.08%, and 0.88% when the input cyclic data volumes are 10, 20, 30, and 40, respectively. The interpretability of the FPNN is mainly reflected in its flexible unit structure and parameter selection: its diverse branching structure enables the model to capture features at different scales, thus allowing the machine to learn informative features. The approach presented herein provides an accurate, adaptable, and comprehensible solution for early life prediction of lithium batteries, opening new possibilities in the field of battery health monitoring.

Metaphors are considered to pose challenges for a wide spectrum of NLP tasks. This gives rise to the area of computational metaphor processing. However, it remains unclear what types of metaphors challenge current state-of-the-art models. In this paper, we test various NLP models on the VUA metaphor dataset and quantify to what extent metaphors affect models' performance on various downstream tasks. Analysis reveals that VUA includes a large number of metaphors that pose little difficulty to downstream tasks. We would like to shift the attention of researchers away from these metaphors to instead focus on challenging metaphors. To identify hard metaphors, we propose an automatic pipeline that identifies metaphors that challenge a particular model. Our analysis demonstrates that our detected hard metaphors contrast significantly with VUA and reduce the accuracy of machine translation by 16\%, QA performance by 4\%, NLI by 7\%, and metaphor identification recall by over 14\% for various popular NLP systems.

Modern SAT or QBF solvers are expected to produce correctness certificates. However, certificates have worst-case exponential size (unless $\textsf{NP}=\textsf{coNP}$), and at recent SAT competitions the largest certificates of unsatisfiability are starting to reach terabyte size. Recently, Couillard, Czerner, Esparza, and Majumdar have suggested to replace certificates with interactive proof systems based on the $\textsf{IP}=\textsf{PSPACE}$ theorem. They have presented an interactive protocol between a prover and a verifier for an extension of QBF. The overall running time of the protocol is linear in the time needed by a standard BDD-based algorithm, and the time invested by the verifier is polynomial in the size of the formula. (So, in particular, the verifier never has to read or process exponentially long certificates). We call such an interactive protocol competitive with the BDD algorithm for solving QBF. While BDD-algorithms are state-of-the-art for certain classes of QBF instances, no modern (UN)SAT solver is based on BDDs. For this reason, we initiate the study of interactive certification for more practical SAT algorithms. In particular, we address the question whether interactive protocols can be competitive with some variant of resolution. We present two contributions. First, we prove a theorem that reduces the problem of finding competitive interactive protocols to finding an arithmetisation of formulas satisfying certain commutativity properties. (Arithmetisation is the fundamental technique underlying the $\textsf{IP}=\textsf{PSPACE}$ theorem.) Then, we apply the theorem to give the first interactive protocol for the Davis-Putnam resolution procedure.

Although continuous advances in theoretical modelling of Molecular Communications (MC) are observed, there is still an insuperable gap between theory and experimental testbeds, especially at the microscale. In this paper, the development of the first testbed incorporating engineered yeast cells is reported. Different from the existing literature, eukaryotic yeast cells are considered for both the sender and the receiver, with {\alpha}-factor molecules facilitating the information transfer. The use of such cells is motivated mainly by the well understood biological mechanism of yeast mating, together with their genetic amenability. In addition, recent advances in yeast biosensing establish yeast as a suitable detector and a neat interface to in-body sensor networks. The system under consideration is presented first, and the mathematical models of the underlying biological processes leading to an end-to-end (E2E) system are given. The experimental setup is then described and used to obtain experimental results which validate the developed mathematical models. Beyond that, the ability of the system to effectively generate output pulses in response to repeated stimuli is demonstrated, reporting one event per two hours. However, fast RNA fluctuations indicate cell responses in less than three minutes, demonstrating the potential for much higher rates in the future.

Chinese Spelling Check (CSC) is a meaningful task in the area of Natural Language Processing (NLP) which aims at detecting spelling errors in Chinese texts and then correcting these errors. However, CSC models are based on pretrained language models, which are trained on a general corpus. Consequently, their performance may drop when confronted with downstream tasks involving domain-specific terms. In this paper, we conduct a thorough evaluation about the domain adaption ability of various typical CSC models by building three new datasets encompassing rich domain-specific terms from the financial, medical, and legal domains. Then we conduct empirical investigations in the corresponding domain-specific test datasets to ascertain the cross-domain adaptation ability of several typical CSC models. We also test the performance of the popular large language model ChatGPT. As shown in our experiments, the performances of the CSC models drop significantly in the new domains.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

北京阿比特科技有限公司