Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub at //github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces - //huggingface.co/spaces/spacerini/gaia.
Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence, especially when tackling complex tasks. While the chain-of-thought (CoT) technique has gained considerable attention, the existing ScienceQA dataset, which focuses on multimodal scientific questions and explanations from elementary and high school textbooks, lacks a comprehensive evaluation of diverse approaches. To address this gap, we present COCO Multi-Modal Reasoning Dataset(COCO-MMRD), a novel dataset that encompasses an extensive collection of open-ended questions, rationales, and answers derived from the large object dataset COCO. Unlike previous datasets that rely on multiple-choice questions, our dataset pioneers the use of open-ended questions in the context of multimodal CoT, introducing a more challenging problem that effectively assesses the reasoning capability of CoT models. Through comprehensive evaluations and detailed analyses, we provide valuable insights and propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders. Extensive experiments demonstrate the efficacy of the proposed dataset and techniques, offering novel perspectives for advancing multimodal reasoning.
Imitation learning is a primary approach to improve the efficiency of reinforcement learning by exploiting the expert demonstrations. However, in many real scenarios, obtaining expert demonstrations could be extremely expensive or even impossible. To overcome this challenge, in this paper, we propose a novel learning framework called Co-Imitation Learning (CoIL) to exploit the past good experiences of the agents themselves without expert demonstration. Specifically, we train two different agents via letting each of them alternately explore the environment and exploit the peer agent's experience. While the experiences could be valuable or misleading, we propose to estimate the potential utility of each piece of experience with the expected gain of the value function. Thus the agents can selectively imitate from each other by emphasizing the more useful experiences while filtering out noisy ones. Experimental results on various tasks show significant superiority of the proposed Co-Imitation Learning framework, validating that the agents can benefit from each other without external supervision.
Recommending suitable jobs to users is a critical task in online recruitment platforms, as it can enhance users' satisfaction and the platforms' profitability. While existing job recommendation methods encounter challenges such as the low quality of users' resumes, which hampers their accuracy and practical effectiveness. With the rapid development of large language models (LLMs), utilizing the rich external knowledge encapsulated within them, as well as their powerful capabilities of text processing and reasoning, is a promising way to complete users' resumes for more accurate recommendations. However, directly leveraging LLMs to enhance recommendation results is not a one-size-fits-all solution, as LLMs may suffer from fabricated generation and few-shot problems, which degrade the quality of resume completion. In this paper, we propose a novel LLM-based approach for job recommendation. To alleviate the limitation of fabricated generation for LLMs, we extract accurate and valuable information beyond users' self-description, which helps the LLMs better profile users for resume completion. Specifically, we not only extract users' explicit properties (e.g., skills, interests) from their self-description but also infer users' implicit characteristics from their behaviors for more accurate and meaningful resume completion. Nevertheless, some users still suffer from few-shot problems, which arise due to scarce interaction records, leading to limited guidance for the models in generating high-quality resumes. To address this issue, we propose aligning unpaired low-quality with high-quality generated resumes by Generative Adversarial Networks (GANs), which can refine the resume representations for better recommendation results. Extensive experiments on three large real-world recruitment datasets demonstrate the effectiveness of our proposed method.
Consistency and reliability are crucial for conducting AI research. Many famous research fields, such as object detection, have been compared and validated with solid benchmark frameworks. After AlphaFold2, the protein folding task has entered a new phase, and many methods are proposed based on the component of AlphaFold2. The importance of a unified research framework in protein folding contains implementations and benchmarks to consistently and fairly compare various approaches. To achieve this, we present Solvent, an protein folding framework that supports significant components of state-of-the-art models in the manner of off-the-shelf interface Solvent contains different models implemented in a unified codebase and supports training and evaluation for defined models on the same dataset. We benchmark well-known algorithms and their components and provide experiments that give helpful insights into the protein structure modeling field. We hope that Solvent will increase the reliability and consistency of proposed models and gives efficiency in both speed and costs, resulting in acceleration on protein folding modeling research. The code is available at //github.com/kakaobrain/solvent, and the project will continue to be developed.
Automated Machine Learning (AutoML) techniques have recently been introduced to design Collaborative Filtering (CF) models in a data-specific manner. However, existing works either search architectures or hyperparameters while ignoring the fact they are intrinsically related and should be considered together. This motivates us to consider a joint hyperparameter and architecture search method to design CF models. However, this is not easy because of the large search space and high evaluation cost. To solve these challenges, we reduce the space by screening out usefulness yperparameter choices through a comprehensive understanding of individual hyperparameters. Next, we propose a two-stage search algorithm to find proper configurations from the reduced space. In the first stage, we leverage knowledge from subsampled datasets to reduce evaluation costs; in the second stage, we efficiently fine-tune top candidate models on the whole dataset. Extensive experiments on real-world datasets show better performance can be achieved compared with both hand-designed and previous searched models. Besides, ablation and case studies demonstrate the effectiveness of our search framework.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.