亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Knowledge graphs (KGs), containing many entity-relation-entity triples, provide rich information for downstream applications. Although extracting triples from unstructured texts has been widely explored, most of them require a large number of labeled instances. The performance will drop dramatically when only few labeled data are available. To tackle this problem, we propose the Mutually Guided Few-shot learning framework for Relational Triple Extraction (MG-FTE). Specifically, our method consists of an entity-guided relation proto-decoder to classify the relations firstly and a relation-guided entity proto-decoder to extract entities based on the classified relations. To draw the connection between entity and relation, we design a proto-level fusion module to boost the performance of both entity extraction and relation classification. Moreover, a new cross-domain few-shot triple extraction task is introduced. Extensive experiments show that our method outperforms many state-of-the-art methods by 12.6 F1 score on FewRel 1.0 (single-domain) and 20.5 F1 score on FewRel 2.0 (cross-domain).

相關內容

Video-language pre-trained models have shown remarkable success in guiding video question-answering (VideoQA) tasks. However, due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones. This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains. To bridge these gaps, in this paper, we propose Tem-Adapter, which enables the learning of temporal dynamics and complex semantics by a visual Temporal Aligner and a textual Semantic Aligner. Unlike conventional pretrained knowledge adaptation methods that only concentrate on the downstream task objective, the Temporal Aligner introduces an extra language-guided autoregressive task aimed at facilitating the learning of temporal dependencies, with the objective of predicting future states based on historical clues and language guidance that describes event progression. Besides, to reduce the semantic gap and adapt the textual representation for better event description, we introduce a Semantic Aligner that first designs a template to fuse question and answer pairs as event descriptions and then learns a Transformer decoder with the whole video sequence as guidance for refinement. We evaluate Tem-Adapter and different pre-train transferring methods on two VideoQA benchmarks, and the significant performance improvement demonstrates the effectiveness of our method.

In recent years, discriminative self-supervised methods have made significant strides in advancing various visual tasks. The central idea of learning a data encoder that is robust to data distortions/augmentations is straightforward yet highly effective. Although many studies have demonstrated the empirical success of various learning methods, the resulting learned representations can exhibit instability and hinder downstream performance. In this study, we analyze discriminative self-supervised methods from a causal perspective to explain these unstable behaviors and propose solutions to overcome them. Our approach draws inspiration from prior works that empirically demonstrate the ability of discriminative self-supervised methods to demix ground truth causal sources to some extent. Unlike previous work on causality-empowered representation learning, we do not apply our solutions during the training process but rather during the inference process to improve time efficiency. Through experiments on both controlled image datasets and realistic image datasets, we show that our proposed solutions, which involve tempering a linear transformation with controlled synthetic data, are effective in addressing these issues.

Dialogue systems for Automatic Differential Diagnosis (ADD) have a wide range of real-life applications. These dialogue systems are promising for providing easy access and reducing medical costs. Building end-to-end ADD dialogue systems requires dialogue training datasets. However, to the best of our knowledge, there is no publicly available ADD dialogue dataset in English (although non-English datasets exist). Driven by this, we introduce MDDial, the first differential diagnosis dialogue dataset in English which can aid to build and evaluate end-to-end ADD dialogue systems. Additionally, earlier studies present the accuracy of diagnosis and symptoms either individually or as a combined weighted score. This method overlooks the connection between the symptoms and the diagnosis. We introduce a unified score for the ADD system that takes into account the interplay between symptoms and diagnosis. This score also indicates the system's reliability. To the end, we train two moderate-size of language models on MDDial. Our experiments suggest that while these language models can perform well on many natural language understanding tasks, including dialogue tasks in the general domain, they struggle to relate relevant symptoms and disease and thus have poor performance on MDDial. MDDial will be released publicly to aid the study of ADD dialogue research.

Building a graph neural network (GNN)-based recommender system without violating user privacy proves challenging. Existing methods can be divided into federated GNNs and decentralized GNNs. But both methods have undesirable effects, i.e., low communication efficiency and privacy leakage. This paper proposes DGREC, a novel decentralized GNN for privacy-preserving recommendations, where users can choose to publicize their interactions. It includes three stages, i.e., graph construction, local gradient calculation, and global gradient passing. The first stage builds a local inner-item hypergraph for each user and a global inter-user graph. The second stage models user preference and calculates gradients on each local device. The third stage designs a local differential privacy mechanism named secure gradient-sharing, which proves strong privacy-preserving of users' private data. We conduct extensive experiments on three public datasets to validate the consistent superiority of our framework.

Commit messages are crucial to software development, allowing developers to track changes and collaborate effectively. Despite their utility, most commit messages lack important information since writing high-quality commit messages is tedious and time-consuming. The active research on commit message generation (CMG) has not yet led to wide adoption in practice. We argue that if we could shift the focus from commit message generation to commit message completion and use previous commit history as additional context, we could significantly improve the quality and the personal nature of the resulting commit messages. In this paper, we propose and evaluate both of these novel ideas. Since the existing datasets lack historical data, we collect and share a novel dataset called CommitChronicle, containing 10.7M commits across 20 programming languages. We use this dataset to evaluate the completion setting and the usefulness of the historical context for state-of-the-art CMG models and GPT-3.5-turbo. Our results show that in some contexts, commit message completion shows better results than generation, and that while in general GPT-3.5-turbo performs worse, it shows potential for long and detailed messages. As for the history, the results show that historical information improves the performance of CMG models in the generation task, and the performance of GPT-3.5-turbo in both generation and completion.

The history of user behaviors constitutes one of the most significant characteristics in predicting the click-through rate (CTR), owing to their strong semantic and temporal correlation with the target item. While the literature has individually examined each of these correlations, research has yet to analyze them in combination, that is, the quadruple correlation of (behavior semantics, target semantics, behavior temporal, and target temporal). The effect of this correlation on performance and the extent to which existing methods learn it remain unknown. To address this gap, we empirically measure the quadruple correlation and observe intuitive yet robust quadruple patterns. We measure the learned correlation of several representative user behavior methods, but to our surprise, none of them learn such a pattern, especially the temporal one. In this paper, we propose the Temporal Interest Network (TIN) to capture the quadruple semantic and temporal correlation between behaviors and the target. We achieve this by incorporating target-aware temporal encoding, in addition to semantic embedding, to represent behaviors and the target. Furthermore, we deploy target-aware attention, along with target-aware representation, to explicitly conduct the 4-way interaction. We performed comprehensive evaluations on the Amazon and Alibaba datasets. Our proposed TIN outperforms the best-performing baselines by 0.43\% and 0.29\% on two datasets, respectively. Comprehensive analysis and visualization show that TIN is indeed capable of learning the quadruple correlation effectively, while all existing methods fail to do so. We provide our implementation of TIN in Tensorflow.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Knowledge graph (KG) embeddings learn low-dimensional representations of entities and relations to predict missing facts. KGs often exhibit hierarchical and logical patterns which must be preserved in the embedding space. For hierarchical data, hyperbolic embedding methods have shown promise for high-fidelity and parsimonious representations. However, existing hyperbolic embedding methods do not account for the rich logical patterns in KGs. In this work, we introduce a class of hyperbolic KG embedding models that simultaneously capture hierarchical and logical patterns. Our approach combines hyperbolic reflections and rotations with attention to model complex relational patterns. Experimental results on standard KG benchmarks show that our method improves over previous Euclidean- and hyperbolic-based efforts by up to 6.1% in mean reciprocal rank (MRR) in low dimensions. Furthermore, we observe that different geometric transformations capture different types of relations while attention-based transformations generalize to multiple relations. In high dimensions, our approach yields new state-of-the-art MRRs of 49.6% on WN18RR and 57.7% on YAGO3-10.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

北京阿比特科技有限公司