DNA storage faces challenges in ensuring data reliability in the presence of edit errors -- deletions, insertions, and substitutions -- that occur randomly during various phases of the storage process. Current limitations in DNA synthesis technology also require the use of short DNA sequences, highlighting the particular need for short edit-correcting codes. Motivated by these factors, we introduce a systematic code designed to correct random edits while adhering to typical length constraints in DNA storage. We evaluate the performance of the code through simulations and assess its effectiveness within a DNA storage framework, revealing promising results.
Task offloading plays a pivotal role in mobile edge computing, enabling terminal devices to enhance task execution efficiency and conserve energy. However, servers are reluctant to offer services without compensation. Currently, pricing mechanisms are commonly employed to incentivize servers to serve terminal devices, with servers earning revenue through payments from these devices. Given the rapid surge in terminal devices, determining the optimal number of servers placement for service providers (SPs) to maximize revenue is crucial. In this paper, we propose a server placement scheme based on an all-pay auction framework. Experimental simulations reveal that an optimal server-user ratio of approximately 25% maximizes SP profits.
The advancement of wireless communication systems toward 5G and beyond is spurred by the demand for high data rates, exceedingly dependable low-latency communication, and extensive connectivity that aligns with sensing requisites such as advanced high-resolution sensing and target detection. Consequently, embedding sensing into communication has gained considerable attention. In this work, we propose an alternative approach for optimizing integrated sensing and communication (ISAC) waveform for target detection by concurrently maximizing the power of the communication signal at an intended user and minimizing the multi-user and sensing interference. We formulate the problem as a non-disciplined convex programming (NDCP) optimization and we use a distribution-based approach for interference cancellation. Precisely, we establish the distribution of the communication signal and the multi-user communication interference received by the intended user, and thereafter, we establish that the sensing interference can be distributed as a centralized Chi-squared if the sensing covariance matrix is idempotent. We design such a matrix based on the symmetrical idempotent property. Additionally, we propose a disciplined convex programming (DCP) form of the problem, and using successive convex approximation (SCA), we show that the solutions can reach a stable waveform for efficient target detection. Furthermore, we compare the proposed waveform with state of the art radar-communication waveform designs and demonstrate its superior performance by computer simulations.
Recommender systems play a crucial role in tackling the challenge of information overload by delivering personalized recommendations based on individual user preferences. Deep learning techniques, such as RNNs, GNNs, and Transformer architectures, have significantly propelled the advancement of recommender systems by enhancing their comprehension of user behaviors and preferences. However, supervised learning methods encounter challenges in real-life scenarios due to data sparsity, resulting in limitations in their ability to learn representations effectively. To address this, self-supervised learning (SSL) techniques have emerged as a solution, leveraging inherent data structures to generate supervision signals without relying solely on labeled data. By leveraging unlabeled data and extracting meaningful representations, recommender systems utilizing SSL can make accurate predictions and recommendations even when confronted with data sparsity. In this paper, we provide a comprehensive review of self-supervised learning frameworks designed for recommender systems, encompassing a thorough analysis of over 170 papers. We conduct an exploration of nine distinct scenarios, enabling a comprehensive understanding of SSL-enhanced recommenders in different contexts. For each domain, we elaborate on different self-supervised learning paradigms, namely contrastive learning, generative learning, and adversarial learning, so as to present technical details of how SSL enhances recommender systems in various contexts. We consistently maintain the related open-source materials at //github.com/HKUDS/Awesome-SSLRec-Papers.
Automatic text-based diacritic restoration models generally have high diacritic error rates when applied to speech transcripts as a result of domain and style shifts in spoken language. In this work, we explore the possibility of improving the performance of automatic diacritic restoration when applied to speech data by utilizing parallel spoken utterances. In particular, we use the pre-trained Whisper ASR model fine-tuned on relatively small amounts of diacritized Arabic speech data to produce rough diacritized transcripts for the speech utterances, which we then use as an additional input for diacritic restoration models. The proposed framework consistently improves diacritic restoration performance compared to text-only baselines. Our results highlight the inadequacy of current text-based diacritic restoration models for speech data sets and provide a new baseline for speech-based diacritic restoration.
Text-to-image diffusion models have shown remarkable success in generating a personalized subject based on a few reference images. However, current methods struggle with handling multiple subjects simultaneously, often resulting in mixed identities with combined attributes from different subjects. In this work, we present MuDI, a novel framework that enables multi-subject personalization by effectively decoupling identities from multiple subjects. Our main idea is to utilize segmented subjects generated by the Segment Anything Model for both training and inference, as a form of data augmentation for training and initialization for the generation process. Our experiments demonstrate that MuDI can produce high-quality personalized images without identity mixing, even for highly similar subjects as shown in Figure 1. In human evaluation, MuDI shows twice as many successes for personalizing multiple subjects without identity mixing over existing baselines and is preferred over 70% compared to the strongest baseline. More results are available at //mudi-t2i.github.io/.
This paper presents error-bounded lossy compression tailored for particle datasets from diverse scientific applications in cosmology, fluid dynamics, and fusion energy sciences. As today's high-performance computing capabilities advance, these datasets often reach trillions of points, posing significant visualization, analysis, and storage challenges. While error-bounded lossy compression makes it possible to represent floating-point values with strict pointwise accuracy guarantees, the lack of correlations in particle data's storage ordering often limits the compression ratio. Inspired by quantization-encoding schemes in SZ lossy compressors, we dynamically determine the number of bits to encode particles of the dataset to increase the compression ratio. Specifically, we utilize a k-d tree to partition particles into subregions and generate ``bit boxes'' centered at particles for each subregion to encode their positions. These bit boxes ensure error control while reducing the bit count used for compression. We comprehensively evaluate our method against state-of-the-art compressors on cosmology, fluid dynamics, and fusion plasma datasets.
We consider the problem of task offloading in multi-access edge computing (MEC) systems constituting $N$ devices assisted by an edge server (ES), where the devices can split task execution between a local processor and the ES. Since the local task execution and communication with the ES both consume power, each device must judiciously choose between the two. We model the problem as a large population non-cooperative game among the $N$ devices. Since computation of an equilibrium in this scenario is difficult due to the presence of a large number of devices, we employ the mean-field game framework to reduce the finite-agent game problem to a generic user's multi-objective optimization problem, with a coupled consistency condition. By leveraging the novel age of information (AoI) metric, we invoke techniques from stochastic hybrid systems (SHS) theory and study the tradeoffs between increasing information freshness and reducing power consumption. In numerical simulations, we validate that a higher load at the ES may lead devices to upload their task to the ES less often.
The escalating volume of data involved in Android backup packages necessitates an innovative approach to compression beyond traditional methods like GZIP, which may not fully exploit the redundancy inherent in Android backups, particularly those containing extensive XML data. This paper introduces the PatternRank algorithm, a novel compression strategy specifically designed for Android backups. PatternRank leverages pattern recognition and ranking, combined with Huffman coding, to efficiently compress data by identifying and replacing frequent, longer patterns with shorter codes. We detail two versions of the PatternRank algorithm: the original version focuses on dynamic pattern extraction and ranking, while the second version incorporates a pre-defined dictionary optimized for the common patterns found in Android backups, particularly within XML files. This tailored approach ensures that PatternRank not only outperforms traditional compression methods in terms of compression ratio and speed but also remains highly effective when dealing with the specific challenges posed by Android backup data. Our analysis includes a comparative study of compression performance across GZIP, PatternRank v1, PatternRank v2, and a combined PatternRank-Huffman method, highlighting the superior efficiency and potential of PatternRank in managing the growing data demands of Android backup packages. Through this exploration, we underscore the significance of adopting pattern-based compression algorithms in optimizing data storage and transmission in the mobile domain.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.