亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Zak-OTFS input/output (I/O) relation is predictable and non-fading when the delay and Doppler periods are greater than the effective channel delay and Doppler spreads, a condition which we refer to as the crystallization condition. The filter taps can simply be read off from the response to a single Zak-OTFS point (impulse) pulsone waveform, and the I/O relation can be reconstructed for a sampled system that operates under finite duration and bandwidth constraints. Predictability opens up the possibility of a model-free mode of operation. The time-domain realization of a Zak-OTFS point pulsone is a pulse train modulated by a tone, hence the name, pulsone. The Peak-to-Average Power Ratio (PAPR) of a pulsone is about $15$ dB, and we describe a general method for constructing a spread pulsone for which the time-domain realization has a PAPR of about 6dB. We construct the spread pulsone by applying a type of discrete spreading filter to a Zak-OTFS point pulsone. The self-ambiguity function of the point pulsone is supported on the period lattice ${\Lambda}_{p}$, and by applying a discrete chirp filter, we obtain a spread pulsone with a self-ambiguity function that is supported on a rotated lattice ${\Lambda^*}$. We show that if the channel satisfies the crystallization conditions with respect to ${\Lambda^*}$ then the effective DD domain filter taps can simply be read off from the cross-ambiguity between the channel response to the spread pulsone and the transmitted spread pulsone. If, in addition, the channel satisfies the crystallization conditions with respect to the period lattice ${\Lambda}_{p}$, then in an OTFS frame consisting of a spread pilot pulsone and point data pulsones, after cancelling the received signal corresponding to the spread pulsone, we can recover the channel response to any data pulsone.

相關內容

Causal models are crucial for understanding complex systems and identifying causal relationships among variables. Even though causal models are extremely popular, conditional probability calculation of formulas involving interventions pose significant challenges. In case of Causal Bayesian Networks (CBNs), Pearl assumes autonomy of mechanisms that determine interventions to calculate a range of probabilities. We show that by making simple yet often realistic independence assumptions, it is possible to uniquely estimate the probability of an interventional formula (including the well-studied notions of probability of sufficiency and necessity). We discuss when these assumptions are appropriate. Importantly, in many cases of interest, when the assumptions are appropriate, these probability estimates can be evaluated using observational data, which carries immense significance in scenarios where conducting experiments is impractical or unfeasible.

The pythagorean fuzzy set (PFS) which is developed based on intuitionistic fuzzy set, is more efficient in elaborating and disposing uncertainties in indeterminate situations, which is a very reason of that PFS is applied in various kinds of fields. How to measure the distance between two pythagorean fuzzy sets is still an open issue. Mnay kinds of methods have been proposed to present the of the question in former reaserches. However, not all of existing methods can accurately manifest differences among pythagorean fuzzy sets and satisfy the property of similarity. And some other kinds of methods neglect the relationship among three variables of pythagorean fuzzy set. To addrees the proplem, a new method of measuring distance is proposed which meets the requirements of axiom of distance measurement and is able to indicate the degree of distinction of PFSs well. Then some numerical examples are offered to to verify that the method of measuring distances can avoid the situation that some counter? intuitive and irrational results are produced and is more effective, reasonable and advanced than other similar methods. Besides, the proposed method of measuring distances between PFSs is applied in a real environment of application which is the medical diagnosis and is compared with other previous methods to demonstrate its superiority and efficiency. And the feasibility of the proposed method in handling uncertainties in practice is also proved at the same time.

The advent of Large Language Models (LLM) has revolutionized the efficiency and speed with which tasks are completed, marking a significant leap in productivity through technological innovation. As these chatbots tackle increasingly complex tasks, the challenge of assessing the quality of their outputs has become paramount. This paper critically examines the output quality of two leading LLMs, OpenAI's ChatGPT and Google's Gemini AI, by comparing the quality of programming code generated in both their free versions. Through the lens of a real-world example coupled with a systematic dataset, we investigate the code quality produced by these LLMs. Given their notable proficiency in code generation, this aspect of chatbot capability presents a particularly compelling area for analysis. Furthermore, the complexity of programming code often escalates to levels where its verification becomes a formidable task, underscoring the importance of our study. This research aims to shed light on the efficacy and reliability of LLMs in generating high-quality programming code, an endeavor that has significant implications for the field of software development and beyond.

End-to-end (E2E) automatic speech recognition (ASR) can operate in two modes: streaming and non-streaming, each with its pros and cons. Streaming ASR processes the speech frames in real-time as it is being received, while non-streaming ASR waits for the entire speech utterance; thus, professionals may have to operate in either mode to satisfy their application. In this work, we present joint optimization of streaming and non-streaming ASR based on multi-decoder and knowledge distillation. Primarily, we study 1) the encoder integration of these ASR modules, followed by 2) separate decoders to make the switching mode flexible, and enhancing performance by 3) incorporating similarity-preserving knowledge distillation between the two modular encoders and decoders. Evaluation results show 2.6%-5.3% relative character error rate reductions (CERR) on CSJ for streaming ASR, and 8.3%-9.7% relative CERRs for non-streaming ASR within a single model compared to multiple standalone modules.

Large Language Models (LLMs) have revolutionised the field of Natural Language Processing (NLP) and have achieved state-of-the-art performance in practically every task in this field. However, the prevalent approach used in text generation, Causal Language Modelling (CLM), which generates text sequentially from left to right, inherently limits the freedom of the model, which does not decide when and where each token is generated. In contrast, Masked Language Modelling (MLM), primarily used for language understanding tasks, can generate tokens anywhere in the text and any order. This paper conducts an extensive comparison of MLM and CLM approaches for text generation tasks. To do so, we pre-train several language models of comparable sizes on three different datasets, namely 1) medical discharge summaries, 2) movie plot synopses, and 3) authorship verification datasets. To assess the quality of the generations, we first employ quantitative metrics and then perform a qualitative human evaluation to analyse coherence and grammatical correctness. In addition, we evaluate the usefulness of the generated texts by using them in three different downstream tasks: 1) Entity Recognition, 2) Text Classification, and 3) Authorship Verification. The results show that MLM consistently outperforms CLM in text generation across all datasets, with higher quantitative scores and better coherence in the generated text. The study also finds \textit{no strong correlation} between the quality of the generated text and the performance of the models in the downstream tasks. With this study, we show that MLM for text generation has great potential for future research and provides direction for future studies in this area.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司