亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To mitigate ATFM delay, different approaches have been proposed so far which can be categorized into strategic and tactical domains. The strategical techniques mainly concern airport slot allocation and for the tactical domain, the ATFM function has several solutions available that range from the ground and air holding to rerouting actions, which have not gained significant efficiency in ATFM delay mitigation due to the fact that delays become apparent only on the tactical level when the strategic flight plan has been filled already. To tackle and address this problem there is a need for an algorithm that can synchronize strategical and tactical schedules. To fill this gap, in this paper the concept of fair buffer scheduling is proposed which can potentially contribute to strategical and tactical operations synchronization that would result in ATFM delay mitigation by increasing the system's robustness. The objective is to obtain an optimum fair and efficient buffer choice that mitigates ATFM delay and increases the stakeholders' welfare. Each appropriate and efficient approach requires a comprehensive understanding of the strategical buffer scheduling. This study presents a delay cost and flight buffer model that could be used for generating optimal buffer times to be considered as the initial population for the optimization problem to investigate the viability of employing fairness measures to obtain schedules with different trade-offs between cost, delay, and fairness.

相關內容

The widespread adoption of Machine Learning systems, especially in more decision-critical applications such as criminal sentencing and bank loans, has led to increased concerns about fairness implications. Algorithms and metrics have been developed to mitigate and measure these discriminations. More recently, works have identified a more challenging form of bias called intersectional bias, which encompasses multiple sensitive attributes, such as race and gender, together. In this survey, we review the state-of-the-art in intersectional fairness. We present a taxonomy for intersectional notions of fairness and mitigation. Finally, we identify the key challenges and provide researchers with guidelines for future directions.

The problem of distributed matrix-vector product is considered, where the server distributes the task of the computation among $n$ worker nodes, out of which $L$ are compromised (but non-colluding) and may return incorrect results. Specifically, it is assumed that the compromised workers are unreliable, that is, at any given time, each compromised worker may return an incorrect and correct result with probabilities $\alpha$ and $1-\alpha$, respectively. Thus, the tests are noisy. This work proposes a new probabilistic group testing approach to identify the unreliable/compromised workers with $O\left(\frac{L\log(n)}{\alpha}\right)$ tests. Moreover, using the proposed group testing method, sparse parity-check codes are constructed and used in the considered distributed computing framework for encoding, decoding and identifying the unreliable workers. This methodology has two distinct features: (i) the cost of identifying the set of $L$ unreliable workers at the server can be shown to be considerably lower than existing distributed computing methods, and (ii) the encoding and decoding functions are easily implementable and computationally efficient.

Homomorphic encryption is a sophisticated encryption technique that allows computations on encrypted data to be done without the requirement for decryption. This trait makes homomorphic encryption appropriate for safe computation in sensitive data scenarios, such as cloud computing, medical data exchange, and financial transactions. The data is encrypted using a public key in homomorphic encryption, and the calculation is conducted on the encrypted data using an algorithm that retains the encryption. The computed result is then decrypted with a private key to acquire the final output. This abstract notion protects data while allowing complicated computations to be done on the encrypted data, resulting in a secure and efficient approach to analysing sensitive information. This article is intended to give a clear idea about the various fully Homomorphic Encryption Schemes present in the literature and analyse and compare the results of each of these schemes. Further, we also provide applications and open-source tools of homomorphic encryption schemes.

Mutual exclusion is an important problem in the context of shared resource usage, where only one process can be using the shared resource at any given time. A mutual exclusion protocol that does not use information on the duration for which each process uses the resource can lead to sub-optimal utilization times. We consider a simple two-process mutual exclusion problem with a central server that provides access to the shared resource. We show that even in the absence of a clock, under certain conditions, the server can opportunistically grant early access to a client based on timing information. We call our new protocol opportunistic mutual exclusion. Our approach requires an extra request signal on each channel between client and server to convey extra information, and the server can grant early access based only on the order of events rather than through measuring time. We derive the handshaking specification and production rules for our protocol, and report on the energy and delay of the circuits in a 65nm process.

We propose a federated learning (FL) in stratosphere (FLSTRA) system, where a high altitude platform station (HAPS) facilitates a large number of terrestrial clients to collaboratively learn a global model without sharing the training data. FLSTRA overcomes the challenges faced by FL in terrestrial networks, such as slow convergence and high communication delay due to limited client participation and multi-hop communications. HAPS leverages its altitude and size to allow the participation of more clients with line-of-sight (LOS) links and the placement of a powerful server. However, handling many clients at once introduces computing and transmission delays. Thus, we aim to obtain a delay-accuracy trade-off for FLSTRA. Specifically, we first develop a joint client selection and resource allocation algorithm for uplink and downlink to minimize the FL delay subject to the energy and quality-of-service (QoS) constraints. Second, we propose a communication and computation resource-aware (CCRA-FL) algorithm to achieve the target FL accuracy while deriving an upper bound for its convergence rate. The formulated problem is non-convex; thus, we propose an iterative algorithm to solve it. Simulation results demonstrate the effectiveness of the proposed FLSTRA system, compared to terrestrial benchmarks, in terms of FL delay and accuracy.

When estimating quantities and fields that are difficult to measure directly, such as the fluidity of ice, from point data sources, such as satellite altimetry, it is important to solve a numerical inverse problem that is formulated with Bayesian consistency. Otherwise, the resultant probability density function for the difficult to measure quantity or field will not be appropriately clustered around the truth. In particular, the inverse problem should be formulated by evaluating the numerical solution at the true point locations for direct comparison with the point data source. If the data are first fitted to a gridded or meshed field on the computational grid or mesh, and the inverse problem formulated by comparing the numerical solution to the fitted field, the benefits of additional point data values below the grid density will be lost. We demonstrate, with examples in the fields of groundwater hydrology and glaciology, that a consistent formulation can increase the accuracy of results and aid discourse between modellers and observationalists. To do this, we bring point data into the finite element method ecosystem as discontinuous fields on meshes of disconnected vertices. Point evaluation can then be formulated as a finite element interpolation operation (dual-evaluation). This new abstraction is well-suited to automation, including automatic differentiation. We demonstrate this through implementation in Firedrake, which generates highly optimised code for solving PDEs with the finite element method. Our solution integrates with dolfin-adjoint/pyadjoint, allowing PDE-constrained optimisation problems, such as data assimilation, to be solved through forward and adjoint mode automatic differentiation.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司