{mayi_des}
The generalization of monocular metric depth estimation (MMDE) has been a longstanding challenge. Recent methods made progress by combining relative and metric depth or aligning input image focal length. However, they are still beset by challenges in camera, scene, and data levels: (1) Sensitivity to different cameras; (2) Inconsistent accuracy across scenes; (3) Reliance on massive training data. This paper proposes SM4Depth, a seamless MMDE method, to address all the issues above within a single network. First, we reveal that a consistent field of view (FOV) is the key to resolve ``metric ambiguity'' across cameras, which guides us to propose a more straightforward preprocessing unit. Second, to achieve consistently high accuracy across scenes, we explicitly model the metric scale determination as discretizing the depth interval into bins and propose variation-based unnormalized depth bins. This method bridges the depth gap of diverse scenes by reducing the ambiguity of the conventional metric bin. Third, to reduce the reliance on massive training data, we propose a ``divide and conquer" solution. Instead of estimating directly from the vast solution space, the correct metric bins are estimated from multiple solution sub-spaces for complexity reduction. Finally, with just 150K RGB-D pairs and a consumer-grade GPU for training, SM4Depth achieves state-of-the-art performance on most previously unseen datasets, especially surpassing ZoeDepth and Metric3D on mRI$_\theta$. The code can be found at //github.com/1hao-Liu/SM4Depth.
We present NeRF-XL, a principled method for distributing Neural Radiance Fields (NeRFs) across multiple GPUs, thus enabling the training and rendering of NeRFs with an arbitrarily large capacity. We begin by revisiting existing multi-GPU approaches, which decompose large scenes into multiple independently trained NeRFs, and identify several fundamental issues with these methods that hinder improvements in reconstruction quality as additional computational resources (GPUs) are used in training. NeRF-XL remedies these issues and enables the training and rendering of NeRFs with an arbitrary number of parameters by simply using more hardware. At the core of our method lies a novel distributed training and rendering formulation, which is mathematically equivalent to the classic single-GPU case and minimizes communication between GPUs. By unlocking NeRFs with arbitrarily large parameter counts, our approach is the first to reveal multi-GPU scaling laws for NeRFs, showing improvements in reconstruction quality with larger parameter counts and speed improvements with more GPUs. We demonstrate the effectiveness of NeRF-XL on a wide variety of datasets, including the largest open-source dataset to date, MatrixCity, containing 258K images covering a 25km^2 city area.
Long methods that encapsulate multiple responsibilities within a single method are challenging to maintain. Choosing which statements to extract into new methods has been the target of many research tools. Despite steady improvements, these tools often fail to generate refactorings that align with developers' preferences and acceptance criteria. Given that Large Language Models (LLMs) have been trained on large code corpora, if we harness their familiarity with the way developers form functions, we could suggest refactorings that developers are likely to accept. In this paper, we advance the science and practice of refactoring by synergistically combining the insights of LLMs with the power of IDEs to perform Extract Method (EM). Our formative study on 1752 EM scenarios revealed that LLMs are very effective for giving expert suggestions, yet they are unreliable: up to 76.3% of the suggestions are hallucinations. We designed a novel approach that removes hallucinations from the candidates suggested by LLMs, then further enhances and ranks suggestions based on static analysis techniques from program slicing, and finally leverages the IDE to execute refactorings correctly. We implemented this approach in an IntelliJ IDEA plugin called EM-Assist. We empirically evaluated EM-Assist on a diverse corpus that replicates 1752 actual refactorings from open-source projects. We found that EM-Assist outperforms previous state of the art tools: EM-Assist suggests the developerperformed refactoring in 53.4% of cases, improving over the recall rate of 39.4% for previous best-in-class tools. Furthermore, we conducted firehouse surveys with 16 industrial developers and suggested refactorings on their recent commits. 81.3% of them agreed with the recommendations provided by EM-Assist.
The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark, along with the scoring code and detailed appendices, have been open-sourced (//github.com/CarlWangChina/MuChin/).
3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (i.e., GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.
Processing-using-DRAM (PuD) is an emerging paradigm that leverages the analog operational properties of DRAM circuitry to enable massively parallel in-DRAM computation. PuD has the potential to reduce or eliminate costly data movement between processing elements and main memory. Prior works experimentally demonstrate three-input MAJ (MAJ3) and two-input AND and OR operations in commercial off-the-shelf (COTS) DRAM chips. Yet, demonstrations on COTS DRAM chips do not provide a functionally complete set of operations. We experimentally demonstrate that COTS DRAM chips are capable of performing 1) functionally-complete Boolean operations: NOT, NAND, and NOR and 2) many-input (i.e., more than two-input) AND and OR operations. We present an extensive characterization of new bulk bitwise operations in 256 off-the-shelf modern DDR4 DRAM chips. We evaluate the reliability of these operations using a metric called success rate: the fraction of correctly performed bitwise operations. Among our 19 new observations, we highlight four major results. First, we can perform the NOT operation on COTS DRAM chips with a 98.37% success rate on average. Second, we can perform up to 16-input NAND, NOR, AND, and OR operations on COTS DRAM chips with high reliability (e.g., 16-input NAND, NOR, AND, and OR with an average success rate of 94.94%, 95.87%, 94.94%, and 95.85%, respectively). Third, data pattern only slightly affects bitwise operations. Our results show that executing NAND, NOR, AND, and OR operations with random data patterns decreases the success rate compared to all logic-1/logic-0 patterns by 1.39%, 1.97%, 1.43%, and 1.98%, respectively. Fourth, bitwise operations are highly resilient to temperature changes, with small success rate fluctuations of at most 1.66% when the temperature is increased from 50C to 95C. We open-source our infrastructure at //github.com/CMU-SAFARI/FCDRAM
We present a differentiable representation, DMesh, for general 3D triangular meshes. DMesh considers both the geometry and connectivity information of a mesh. In our design, we first get a set of convex tetrahedra that compactly tessellates the domain based on Weighted Delaunay Triangulation (WDT), and formulate probability of faces to exist on our desired mesh in a differentiable manner based on the WDT. This enables DMesh to represent meshes of various topology in a differentiable way, and allows us to reconstruct the mesh under various observations, such as point cloud and multi-view images using gradient-based optimization. The source code and full paper is available at: //sonsang.github.io/dmesh-project.
This article presents Persistence Administered Collective Navigation (PACNav) as an approach for achieving decentralized collective navigation of Unmanned Aerial Vehicle (UAV) swarms. The technique is inspired by the flocking and collective navigation behavior observed in natural swarms, such as cattle herds, bird flocks, and even large groups of humans. PACNav relies solely on local observations of relative positions of UAVs, making it suitable for large swarms deprived of communication capabilities and external localization systems. We introduce the novel concepts of path persistence and path similarity, which allow each swarm member to analyze the motion of others. PACNav is grounded on two main principles: (1) UAVs with little variation in motion direction exhibit high path persistence and are considered reliable leaders by other UAVs; (2) groups of UAVs that move in a similar direction demonstrate high path similarity, and such groups are assumed to contain a reliable leader. The proposed approach also incorporates a reactive collision avoidance mechanism to prevent collisions with swarm members and environmental obstacles. The method is validated through simulated and real-world experiments conducted in a natural forest.
Device fingerprinting can be used by Internet Service Providers (ISPs) to identify vulnerable IoT devices for early prevention of threats. However, due to the wide deployment of middleboxes in ISP networks, some important data, e.g., 5-tuples and flow statistics, are often obscured, rendering many existing approaches invalid. It is further challenged by the high-speed traffic of hundreds of terabytes per day in ISP networks. This paper proposes DeviceRadar, an online IoT device fingerprinting framework that achieves accurate, real-time processing in ISPs using programmable switches. We innovatively exploit "key packets" as a basis of fingerprints only using packet sizes and directions, which appear periodically while exhibiting differences across different IoT devices. To utilize them, we propose a packet size embedding model to discover the spatial relationships between packets. Meanwhile, we design an algorithm to extract the "key packets" of each device, and propose an approach that jointly considers the spatial relationships and the key packets to produce a neighboring key packet distribution, which can serve as a feature vector for machine learning models for inference. Last, we design a model transformation method and a feature extraction process to deploy the model on a programmable data plane within its constrained arithmetic operations and memory to achieve line-speed processing. Our experiments show that DeviceRadar can achieve state-of-the-art accuracy across 77 IoT devices with 40 Gbps throughput, and requires only 1.3% of the processing time compared to GPU-accelerated approaches.
This paper presents a systematic literature review of published studies on AI-based automated speech therapy tools for persons with speech sound disorders (SSD). The COVID-19 pandemic has initiated the requirement for automated speech therapy tools for persons with SSD making speech therapy accessible and affordable. However, there are no guidelines for designing such automated tools and their required degree of automation compared to human experts. In this systematic review, we followed the PRISMA framework to address four research questions: 1) what types of SSD do AI-based automated speech therapy tools address, 2) what is the level of autonomy achieved by such tools, 3) what are the different modes of intervention, and 4) how effective are such tools in comparison with human experts. An extensive search was conducted on digital libraries to find research papers relevant to our study from 2007 to 2022. The results show that AI-based automated speech therapy tools for persons with SSD are increasingly gaining attention among researchers. Articulation disorders were the most frequently addressed SSD based on the reviewed papers. Further, our analysis shows that most researchers proposed fully automated tools without considering the role of other stakeholders. Our review indicates that mobile-based and gamified applications were the most frequent mode of intervention. The results further show that only a few studies compared the effectiveness of such tools compared to expert Speech-Language Pathologists (SLP). Our paper presents the state-of-the-art in the field, contributes significant insights based on the research questions, and provides suggestions for future research directions.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.