Digital information exchange enables quick creation and sharing of information and thus changes existing habits. Social media is becoming the main source of news for end-users replacing traditional media. This also enables the proliferation of fake news, which misinforms readers and is used to serve the interests of the creators. As a result, automated fake news detection systems are attracting attention. However, automatic fake news detection presents a major challenge; content evaluation is increasingly becoming the responsibility of the end-user. Thus, in the present study we used information quality (IQ) as an instrument to investigate how users can detect fake news. Specifically, we examined how users perceive fake news in the form of shorter paragraphs on individual IQ dimensions. We also investigated which user characteristics might affect fake news detection. We performed an empirical study with 1123 users, who evaluated randomly generated stories with statements of various level of correctness by individual IQ dimensions. The results reveal that IQ can be used as a tool for fake news detection. Our findings show that (1) domain knowledge has a positive impact on fake news detection; (2) education in combination with domain knowledge improves fake news detection; and (3) personality trait conscientiousness contributes significantly to fake news detection in all dimensions.
Brain computer interfaces systems are controlled by users through neurophysiological input for a variety of applications including communication, environmental control, motor rehabilitation, and cognitive training. Although individuals with severe speech and physical impairment are the primary users of this technology, BCIs have emerged as a potential tool for broader populations, especially with regards to delivering cognitive training or interventions with neurofeedback. The goal of this study was to investigate the feasibility of using a BCI system with neurofeedback as an intervention for people with mild Alzheimer's disease. The study focused on visual attention and language since ad is often associated with functional impairments in language and reading. The study enrolled five adults with mild ad in a nine to thirteen week BCI EEG based neurofeedback intervention to improve attention and reading skills. Two participants completed intervention entirely. The remaining three participants could not complete the intervention phase because of restrictions related to covid. Pre and post assessment measures were used to assess reliability of outcome measures and generalization of treatment to functional reading, processing speed, attention, and working memory skills. Participants demonstrated steady improvement in most cognitive measures across experimental phases, although there was not a significant effect of NFB on most measures of attention. One subject demonstrated significantly significant improvement in letter cancellation during NFB. All participants with mild AD learned to operate a BCI system with training. Results have broad implications for the design and use of bci systems for participants with cognitive impairment. Preliminary evidence justifies implementing NFB-based cognitive measures in AD.
Discrete-event systems usually consist of discrete states and transitions between them caused by spontaneous occurrences of labelled (aka partially-observed) events. Due to the partially-observed feature, fundamental properties therein could be classified into two categories: state/event-inference-based properties (e.g., strong detectability, diagnosability, and predictability) and state-concealment-based properties (e.g., opacity). Intuitively, the former category describes whether one can use observed output sequences to infer the current and subsequent states, past occurrences of faulty events, or future certain occurrences of faulty events; while the latter describes whether one cannot use observed output sequences to infer whether some secret states have been visited (that is, whether the DES can conceal the status that its secret states have been visited). Over the past two decades these properties were studied separately using different methods. In this review article, for labeled finite-state automata, a unified concurrent-composition method is shown to verify all above inference-based properties and concealment-based properties, resulting in a unified mathematical framework for the two categories of properties. In addition, compared with the previous methods in the literature, the concurrent-composition method does not depend on assumptions and is more efficient.
In this paper, we explore the problem of developing personalized chatbots. A personalized chatbot is designed as a digital chatting assistant for a user. The key characteristic of a personalized chatbot is that it should have a consistent personality with the corresponding user. It can talk the same way as the user when it is delegated to respond to others' messages. We present a retrieval-based personalized chatbot model, namely IMPChat, to learn an implicit user profile from the user's dialogue history. We argue that the implicit user profile is superior to the explicit user profile regarding accessibility and flexibility. IMPChat aims to learn an implicit user profile through modeling user's personalized language style and personalized preferences separately. To learn a user's personalized language style, we elaborately build language models from shallow to deep using the user's historical responses; To model a user's personalized preferences, we explore the conditional relations underneath each post-response pair of the user. The personalized preferences are dynamic and context-aware: we assign higher weights to those historical pairs that are topically related to the current query when aggregating the personalized preferences. We match each response candidate with the personalized language style and personalized preference, respectively, and fuse the two matching signals to determine the final ranking score. Comprehensive experiments on two large datasets show that our method outperforms all baseline models.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.
In recent years, disinformation including fake news, has became a global phenomenon due to its explosive growth, particularly on social media. The wide spread of disinformation and fake news can cause detrimental societal effects. Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation. The goal of this chapter is to pave the way for appreciating the challenges and advancements via: (1) introducing the types of information disorder on social media and examine their differences and connections; (2) describing important and emerging tasks to combat disinformation for characterization, detection and attribution; and (3) discussing a weak supervision approach to detect disinformation with limited labeled data. We then provide an overview of the chapters in this book that represent the recent advancements in three related parts: (1) user engagements in the dissemination of information disorder; (2) techniques on detecting and mitigating disinformation; and (3) trending issues such as ethics, blockchain, clickbaits, etc. We hope this book to be a convenient entry point for researchers, practitioners, and students to understand the problems and challenges, learn state-of-the-art solutions for their specific needs, and quickly identify new research problems in their domains.
Generating realistic images from scene graphs asks neural networks to be able to reason about object relationships and compositionality. As a relatively new task, how to properly ensure the generated images comply with scene graphs or how to measure task performance remains an open question. In this paper, we propose to harness scene graph context to improve image generation from scene graphs. We introduce a scene graph context network that pools features generated by a graph convolutional neural network that are then provided to both the image generation network and the adversarial loss. With the context network, our model is trained to not only generate realistic looking images, but also to better preserve non-spatial object relationships. We also define two novel evaluation metrics, the relation score and the mean opinion relation score, for this task that directly evaluate scene graph compliance. We use both quantitative and qualitative studies to demonstrate that our pro-posed model outperforms the state-of-the-art on this challenging task.
This paper describes the development of the Microsoft XiaoIce system, the most popular social chatbot in the world. XiaoIce is uniquely designed as an AI companion with an emotional connection to satisfy the human need for communication, affection, and social belonging. We take into account both intelligent quotient (IQ) and emotional quotient (EQ) in system design, cast human-machine social chat as decision-making over Markov Decision Processes (MDPs), and optimize XiaoIce for long-term user engagement, measured in expected Conversation-turns Per Session (CPS). We detail the system architecture and key components including dialogue manager, core chat, skills, and an empathetic computing module. We show how XiaoIce dynamically recognizes human feelings and states, understands user intents, and responds to user needs throughout long conversations. Since the release in 2014, XiaoIce has communicated with over 660 million users and succeeded in establishing long-term relationships with many of them. Analysis of large-scale online logs shows that XiaoIce has achieved an average CPS of 23, which is significantly higher than that of other chatbots and even human conversations.
Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.
Can an algorithm create original and compelling fashion designs to serve as an inspirational assistant? To help answer this question, we design and investigate different image generation models associated with different loss functions to boost creativity in fashion generation. The dimensions of our explorations include: (i) different Generative Adversarial Networks architectures that start from noise vectors to generate fashion items, (ii) a new loss function that encourages creativity, and (iii) a generation process following the key elements of fashion design (disentangling shape and texture makers). A key challenge of this study is the evaluation of generated designs and the retrieval of best ones, hence we put together an evaluation protocol associating automatic metrics and human experimental studies that we hope will help ease future research. We show that our proposed creativity loss yields better overall appreciation than the one employed in Creative Adversarial Networks. In the end, about 61% of our images are thought to be created by human designers rather than by a computer while also being considered original per our human subject experiments, and our proposed loss scores the highest compared to existing losses in both novelty and likability.
To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.