亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide a comprehensive theory of conducting in-sample statistical inference about receiver operating characteristic (ROC) curves that are based on predicted values from a first stage model with estimated parameters (such as a logit regression). The term "in-sample" refers to the practice of using the same data for model estimation (training) and subsequent evaluation, i.e., the construction of the ROC curve. We show that in this case the first stage estimation error has a generally non-negligible impact on the asymptotic distribution of the ROC curve and develop the appropriate pointwise and functional limit theory. We propose methods for simulating the distribution of the limit process and show how to use the results in practice in comparing ROC curves.

相關內容

The optimal receiver operating characteristic (ROC) curve, giving the maximum probability of detection as a function of the probability of false alarm, is a key information-theoretic indicator of the difficulty of a binary hypothesis testing problem (BHT). It is well known that the optimal ROC curve for a given BHT, corresponding to the likelihood ratio test, is theoretically determined by the probability distribution of the observed data under each of the two hypotheses. In some cases, these two distributions may be unknown or computationally intractable, but independent samples of the likelihood ratio can be observed. This raises the problem of estimating the optimal ROC for a BHT from such samples. The maximum likelihood estimator of the optimal ROC curve is derived, and it is shown to converge to the true optimal ROC curve in the \levy\ metric, as the number of observations tends to infinity. A classical empirical estimator, based on estimating the two types of error probabilities from two separate sets of samples, is also considered. The maximum likelihood estimator is observed in simulation experiments to be considerably more accurate than the empirical estimator, especially when the number of samples obtained under one of the two hypotheses is small. The area under the maximum likelihood estimator is derived; it is a consistent estimator of the true area under the optimal ROC curve.

A class of models that have been widely used are the exponential random graph (ERG) models, which form a comprehensive family of models that include independent and dyadic edge models, Markov random graphs, and many other graph distributions, in addition to allow the inclusion of covariates that can lead to a better fit of the model. Another increasingly popular class of models in statistical network analysis are stochastic block models (SBMs). They can be used for the purpose of grouping nodes into communities or discovering and analyzing a latent structure of a network. The stochastic block model is a generative model for random graphs that tends to produce graphs containing subsets of nodes characterized by being connected to each other, called communities. Many researchers from various areas have been using computational tools to adjust these models without, however, analyzing their suitability for the data of the networks they are studying. The complexity involved in the estimation process and in the goodness-of-fit verification methodologies for these models can be factors that make the analysis of adequacy difficult and a possible discard of one model in favor of another. And it is clear that the results obtained through an inappropriate model can lead the researcher to very wrong conclusions about the phenomenon studied. The purpose of this work is to present a simple methodology, based on Hypothesis Tests, to verify if there is a model specification error for these two cases widely used in the literature to represent complex networks: the ERGM and the SBM. We believe that this tool can be very useful for those who want to use these models in a more careful way, verifying beforehand if the models are suitable for the data under study.

Causal inference methods can be applied to estimate the effect of a point exposure or treatment on an outcome of interest using data from observational studies. When the outcome of interest is a count, the estimand is often the causal mean ratio, i.e., the ratio of the counterfactual mean count under exposure to the counterfactual mean count under no exposure. This paper considers estimators of the causal mean ratio based on inverse probability of treatment weights, the parametric g-formula, and doubly robust estimation, each of which can account for overdispersion, zero-inflation, and heaping in the measured outcome. Methods are compared in simulations and are applied to data from the Women's Interagency HIV Study to estimate the effect of incarceration in the past six months on two count outcomes in the subsequent six months: the number of sexual partners and the number of cigarettes smoked per day.

We consider the approximation of the inverse square root of regularly accretive operators in Hilbert spaces. The approximation is of rational type and comes from the use of the Gauss-Legendre rule applied to a special integral formulation of the problem. We derive sharp error estimates, based on the use of the numerical range, and provide some numerical experiments. For practical purposes, the finite dimensional case is also considered. In this setting, the convergence is shown to be of exponential type.

In this article, we construct and analyse an explicit numerical splitting method for a class of semi-linear stochastic differential equations (SDEs) with additive noise, where the drift is allowed to grow polynomially and satisfies a global one-sided Lipschitz condition. The method is proved to be mean-square convergent of order 1 and to preserve important structural properties of the SDE. First, it is hypoelliptic in every iteration step. Second, it is geometrically ergodic and has an asymptotically bounded second moment. Third, it preserves oscillatory dynamics, such as amplitudes, frequencies and phases of oscillations, even for large time steps. Our results are illustrated on the stochastic FitzHugh-Nagumo model and compared with known mean-square convergent tamed/truncated variants of the Euler-Maruyama method. The capability of the proposed splitting method to preserve the aforementioned properties may make it applicable within different statistical inference procedures. In contrast, known Euler-Maruyama type methods commonly fail in preserving such properties, yielding ill-conditioned likelihood-based estimation tools or computationally infeasible simulation-based inference algorithms.

Many functions have approximately-known upper and/or lower bounds, potentially aiding the modeling of such functions. In this paper, we introduce Gaussian process models for functions where such bounds are (approximately) known. More specifically, we propose the first use of such bounds to improve Gaussian process (GP) posterior sampling and Bayesian optimization (BO). That is, we transform a GP model satisfying the given bounds, and then sample and weight functions from its posterior. To further exploit these bounds in BO settings, we present bounded entropy search (BES) to select the point gaining the most information about the underlying function, estimated by the GP samples, while satisfying the output constraints. We characterize the sample variance bounds and show that the decision made by BES is explainable. Our proposed approach is conceptually straightforward and can be used as a plug in extension to existing methods for GP posterior sampling and Bayesian optimization.

Conformal prediction (CP) is a wrapper around traditional machine learning models, giving coverage guarantees under the sole assumption of exchangeability; in classification problems, for a chosen significance level $\varepsilon$, CP guarantees that the number of errors is at most $\varepsilon$, irrespective of whether the underlying model is misspecified. However, the prohibitive computational costs of full CP led researchers to design scalable alternatives, which alas do not attain the same guarantees or statistical power of full CP. In this paper, we use influence functions to efficiently approximate full CP. We prove that our method is a consistent approximation of full CP, and empirically show that the approximation error becomes smaller as the training set increases; e.g., for $10^{3}$ training points the two methods output p-values that are $<10^{-3}$ apart: a negligible error for any practical application. Our methods enable scaling full CP to large real-world datasets. We compare our full CP approximation ACP to mainstream CP alternatives, and observe that our method is computationally competitive whilst enjoying the statistical predictive power of full CP.

Recently a machine learning approach to Monte-Carlo simulations called Neural Markov Chain Monte-Carlo (NMCMC) is gaining traction. In its most popular form it uses the neural networks to construct normalizing flows which are then trained to approximate the desired target distribution. As this distribution is usually defined via a Hamiltonian or action, the standard learning algorithm requires estimation of the action gradient with respect to the fields. In this contribution we present another gradient estimator (and the corresponding [PyTorch implementation) that avoids this calculation, thus potentially speeding up training for models with more complicated actions. We also study the statistical properties of several gradient estimators and show that our formulation leads to better training results.

A central question in multi-agent strategic games deals with learning the underlying utilities driving the agents' behaviour. Motivated by the increasing availability of large data-sets, we develop an unifying data-driven technique to estimate agents' utility functions from their observed behaviour, irrespective of whether the observations correspond to (Nash) equilibrium configurations or to action profile trajectories. Under standard assumptions on the parametrization of the utilities, the proposed inference method is computationally efficient and finds all the parameters that rationalize the observed behaviour best. We numerically validate our theoretical findings on the market share estimation problem under advertising competition, using historical data from the Coca-Cola Company and Pepsi Inc. duopoly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司