亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is a wide range of mathematical models that describe populations of large numbers of neurons. In this article, we focus on nonlinear noisy leaky integrate and fire (NNLIF) models that describe neuronal activity at the level of the membrane potential of neurons. We introduce a set of novel states, which we call "pseudo-equilibria", and give evidence of their defining role in the behaviour of the NNLIF system when a significant synaptic delay is considered. The advantage is that these states are determined solely by the system's parameters and are derived from a sequence of firing rates that result from solving a recurrence equation. We propose a new strategy to show convergence to an equilibrium for a weakly connected system with large transmission delay, based on following the sequence of pseudo-equilibria. Unlike with the direct entropy dissipation method, this technique allows us to see how a large delay favours convergence. We also present a detailed numerical study to support our results. This study explores the overall behaviour of the NNLIF system and helps us understand, among other phenomena, periodic solutions in strongly inhibitory networks.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Processing(編程語言) · ChatGPT · 可約的 · Excel ·
2024 年 7 月 15 日

In recent years, the field of artificial intelligence has been rapidly developing. Among them, OpenAI's ChatGPT excels at natural language processing tasks and can also generate source code. However, the generated code often has problems with consistency and program rules. Therefore, in this research, we developed a system that tests the code generated by ChatGPT, automatically corrects it if it is inappropriate, and presents the appropriate code to the user. This study aims to address the challenge of reducing the manual effort required for the human feedback and modification process for generated code. When we ran the system, we were able to automatically modify the code as intended.

In this paper, we investigate the strong convergence analysis of parareal algorithms for stochastic Maxwell equations with the damping term driven by additive noise. The proposed parareal algorithms proceed as two-level temporal parallelizable integrators with the stochastic exponential integrator as the coarse propagator and both the exact solution integrator and the stochastic exponential integrator as the fine propagator. It is proved that the convergence order of the proposed algorithms linearly depends on the iteration number. Numerical experiments are performed to illustrate the convergence order of the algorithms for different choices of the iteration number, the damping coefficient and the scale of noise.

We theoretically explore boundary conditions for lattice Boltzmann methods, focusing on a toy two-velocities scheme. By mapping lattice Boltzmann schemes to Finite Difference schemes, we facilitate rigorous consistency and stability analyses. We develop kinetic boundary conditions for inflows and outflows, highlighting the trade-off between accuracy and stability, which we successfully overcome. Consistency analysis relies on modified equations, whereas stability is assessed using GKS (Gustafsson, Kreiss, and Sundstr{\"o}m) theory and -- when this approach fails on coarse meshes -- spectral and pseudo-spectral analyses of the scheme's matrix that explain effects germane to low resolutions.

This paper presents an integrated perspective on robustness in regression. Specifically, we examine the relationship between traditional outlier-resistant robust estimation and robust optimization, which focuses on parameter estimation resistant to imaginary dataset-perturbations. While both are commonly regarded as robust methods, these concepts demonstrate a bias-variance trade-off, indicating that they follow roughly converse strategies.

In contemporary problems involving genetic or neuroimaging data, thousands of hypotheses need to be tested. Due to their high power, and finite sample guarantees on type-1 error under weak assumptions, Monte-Carlo permutation tests are often considered as gold standard for these settings. However, the enormous computational effort required for (thousands of) permutation tests is a major burden. Recently, Fischer and Ramdas (2024) constructed a permutation test for a single hypothesis in which the permutations are drawn sequentially one-by-one and the testing process can be stopped at any point without inflating the type I error. They showed that the number of permutations can be substantially reduced (under null and alternative) while the power remains similar. We show how their approach can be modified to make it suitable for a broad class of multiple testing procedures. In particular, we discuss its use with the Benjamini-Hochberg procedure and illustrate the application on a large dataset.

In Bayesian quantile regression, the most commonly used likelihood is the asymmetric Laplace (AL) likelihood. The reason for this choice is not that it is a plausible data-generating model but that the corresponding maximum likelihood estimator is identical to the classical estimator by Koenker and Bassett (1978), and in that sense, the AL likelihood can be thought of as a working likelihood. AL-based quantile regression has been shown to produce good finite-sample Bayesian point estimates and to be consistent. However, if the AL distribution does not correspond to the data-generating distribution, credible intervals based on posterior standard deviations can have poor coverage. Yang, Wang, and He (2016) proposed an adjustment to the posterior covariance matrix that produces asymptotically valid intervals. However, we show that this adjustment is sensitive to the choice of scale parameter for the AL likelihood and can lead to poor coverage when the sample size is small to moderate. We therefore propose using Infinitesimal Jackknife (IJ) standard errors (Giordano & Broderick, 2023). These standard errors do not require resampling but can be obtained from a single MCMC run. We also propose a version of IJ standard errors for clustered data. Simulations and applications to real data show that the IJ standard errors have good frequentist properties, both for independent and clustered data. We provide an R-package that computes IJ standard errors for clustered or independent data after estimation with the brms wrapper in R for Stan.

In this work we study the numerical approximation of a class of ergodic Backward Stochastic Differential Equations. These equations are formulated in an infinite horizon framework and provide a probabilistic representation for elliptic Partial Differential Equations of ergodic type. In order to build our numerical scheme, we put forward a new representation of the PDE solution by using a classical probabilistic representation of the gradient. Then, based on this representation, we propose a fully implementable numerical scheme using a Picard iteration procedure, a grid space discretization and a Monte-Carlo approximation. Up to a limiting technical condition that guarantee the contraction of the Picard procedure, we obtain an upper bound for the numerical error. We also provide some numerical experiments that show the efficiency of this approach for small dimensions.

Motivated by the application of saddlepoint approximations to resampling-based statistical tests, we prove that a Lugananni-Rice style approximation for conditional tail probabilities of averages of conditionally independent random variables has vanishing relative error. We also provide a general condition on the existence and uniqueness of the solution to the corresponding saddlepoint equation. The results are valid under a broad class of distributions involving no restrictions on the smoothness of the distribution function. The derived saddlepoint approximation formula can be directly applied to resampling-based hypothesis tests, including bootstrap, sign-flipping and conditional randomization tests. Our results extend and connect several classical saddlepoint approximation results. On the way to proving our main results, we prove a new conditional Berry-Esseen inequality for the sum of conditionally independent random variables, which may be of independent interest.

Time sharing between activities remains an indispensable part of everyday activity pattern. However, the issue has not yet been fully acknowledged within the existing time allocation models, potentially resulting in inaccuracies in valuing travel time savings. Therefore this study is aimed at addressing this gap by investigating the potential impact of introducing time sharing within such a framework, as well as factors determining it as represented by travel activities. In doing so, time constraint in the time allocation model of Small was modified to enable sharing the same time interval between different activities. The resulting expression indicated that such an augmentation could lead to lower estimates of value of time as a resource. On the other hand, empirical research based on the data from the National Passenger Survey 2004 used for calibrating cross-nested logit model indicated a number of factors affecting the choice of travel activities. It was discovered that significant include possession of equipment allowing particular activities, e.g. newspaper, paperwork or ICT devices, companionship, gender, length of the journey, frequency of using the service, possibility of working on the train, journey planning in advance, first class travel, termination of the trip in central London, peak-time travel and availability of seating.

In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Value Decomposition (STAT-SVD) is proposed. The proposed procedure features a novel double projection \& thresholding scheme, which provides a sharp criterion for thresholding in each iteration. Compared with regular tensor SVD model, STAT-SVD permits more robust estimation under weaker assumptions. Both the upper and lower bounds for estimation accuracy are developed. The proposed procedure is shown to be minimax rate-optimal in a general class of situations. Simulation studies show that STAT-SVD performs well under a variety of configurations. We also illustrate the merits of the proposed procedure on a longitudinal tensor dataset on European country mortality rates.

北京阿比特科技有限公司