亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although there is widespread recognition of racial bias in US law, it is unclear how such bias appears in the language of law, namely judicial opinions, and whether it varies across time period or region. Building upon approaches for measuring implicit racial bias in large-scale corpora, we approximate GloVe word embeddings for over 6 million US federal and state court cases from 1860 to 2009. We find strong evidence of racial bias across nearly all regions and time periods, as traditionally Black names are more closely associated with pre-classified "unpleasant" terms whereas traditionally White names are more closely associated with pre-classified "pleasant" terms. We also test whether legal opinions before 1950 exhibit more implicit racial bias than those after 1950, as well as whether opinions from Southern states exhibit less change in racial bias than those from Northeastern states. We do not find evidence of elevated bias in legal opinions before 1950, or evidence that legal opinions from Northeastern states show greater change in racial bias over time compared to Southern states. These results motivate further research into institutionalized racial bias.

相關內容

Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.

Dichotomy theorems, which characterize the conditions under which a problem can be solved efficiently, have helped identify important tractability borders for as probabilistic query evaluation, view maintenance, query containment (among many more problems). However, dichotomy theorems for many such problems remain elusive under key settings such as bag semantics or for queries with self-joins. This work aims to unearth dichotomies for fundamental problems in reverse data management and knowledge representation. We use a novel approach to discovering dichotomies: instead of creating dedicated algorithms for easy (PTIME) and hard cases (NP-complete), we devise unified algorithms that are guaranteed to terminate in PTIME for easy cases. Using this approach, we discovered new tractable cases for the problem of minimal factorization of provenance formulas as well as dichotomies under bag semantics for the problems of resilience and causal responsibility

ChatGPT is a large language model developed by OpenAI. Despite its impressive performance across various tasks, no prior work has investigated its capability in the biomedical domain yet. To this end, this paper aims to evaluate the performance of ChatGPT on various benchmark biomedical tasks, such as relation extraction, document classification, question answering, and summarization. To the best of our knowledge, this is the first work that conducts an extensive evaluation of ChatGPT in the biomedical domain. Interestingly, we find based on our evaluation that in biomedical datasets that have smaller training sets, zero-shot ChatGPT even outperforms the state-of-the-art fine-tuned generative transformer models, such as BioGPT and BioBART. This suggests that ChatGPT's pre-training on large text corpora makes it quite specialized even in the biomedical domain. Our findings demonstrate that ChatGPT has the potential to be a valuable tool for various tasks in the biomedical domain that lack large annotated data.

We address the problem of constraint encoding explosion which hinders the applicability of state merging in symbolic execution. Specifically, our goal is to reduce the number of disjunctions and if-then-else expressions introduced during state merging. The main idea is to dynamically partition the symbolic states into merging groups according to a similar uniform structure detected in their path constraints, which allows to efficiently encode the merged path constraint and memory using quantifiers. To address the added complexity of solving quantified constraints, we propose a specialized solving procedure that reduces the solving time in many cases. Our evaluation shows that our approach can lead to significant performance gains.

As increasingly sophisticated language models emerge, their trustworthiness becomes a pivotal issue, especially in tasks such as summarization and question-answering. Ensuring their responses are contextually grounded and faithful is challenging due to the linguistic diversity and the myriad of possible answers. In this paper, we introduce a novel approach to evaluate faithfulness of machine-generated text by computing the longest noncontinuous substring of the claim that is supported by the context, which we refer to as the Longest Supported Subsequence (LSS). Using a new human-annotated dataset, we finetune a model to generate LSS. We introduce a new method of evaluation and demonstrate that these metrics correlate better with human ratings when LSS is employed, as opposed to when it is not. Our proposed metric demonstrates an 18% enhancement over the prevailing state-of-the-art metric for faithfulness on our dataset. Our metric consistently outperforms other metrics on a summarization dataset across six different models. Finally, we compare several popular Large Language Models (LLMs) for faithfulness using this metric. We release the human-annotated dataset built for predicting LSS and our fine-tuned model for evaluating faithfulness.

In recommendation literature, explainability and fairness are becoming two prominent perspectives to consider. However, prior works have mostly addressed them separately, for instance by explaining to consumers why a certain item was recommended or mitigating disparate impacts in recommendation utility. None of them has leveraged explainability techniques to inform unfairness mitigation. In this paper, we propose an approach that relies on counterfactual explanations to augment the set of user-item interactions, such that using them while inferring recommendations leads to fairer outcomes. Modeling user-item interactions as a bipartite graph, our approach augments the latter by identifying new user-item edges that not only can explain the original unfairness by design, but can also mitigate it. Experiments on two public data sets show that our approach effectively leads to a better trade-off between fairness and recommendation utility compared with state-of-the-art mitigation procedures. We further analyze the characteristics of added edges to highlight key unfairness patterns. Source code available at //github.com/jackmedda/RS-BGExplainer/tree/cikm2023.

VR has recently been promoted as a tool for knowledge workers and studies have shown that it has the potential to improve knowledge work. However, studies on its prolonged use have been scarce. A prior study compared working in VR for one week to working in a physical environment, focusing on performance measures and subjective feedback. However, a nuanced understanding and comparison of participants' behavior in VR and the physical environment is still missing. To this end, we analyzed video material made available from this previously conducted experiment, carried out over a working week, and present our findings on comparing the behavior of participants while working in VR and in a physical environment.

Bayesian classifiers perform well when each of the features is completely independent of the other which is not always valid in real world application. The aim of this study is to implement and compare the performances of each variant of Bayesian classifier (Multinomial, Bernoulli, and Gaussian) on anomaly detection in network intrusion, and to investigate whether there is any association between each variant assumption and their performance. Our investigation showed that each variant of Bayesian algorithm blindly follows its assumption regardless of feature property, and that the assumption is the single most important factor that influences their accuracy. Experimental results show that Bernoulli has accuracy of 69.9% test (71% train), Multinomial has accuracy of 31.2% test (31.2% train), while Gaussian has accuracy of 81.69% test (82.84% train). Going deeper, we investigated and found that each Naive Bayes variants performances and accuracy is largely due to each classifier assumption, Gaussian classifier performed best on anomaly detection due to its assumption that features follow normal distributions which are continuous, while multinomial classifier have a dismal performance as it simply assumes discreet and multinomial distribution.

Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.

Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.

北京阿比特科技有限公司