Rate split multiple access (RSMA) has been proven as an effective communication scheme for 5G and beyond, especially in vehicular scenarios. However, RSMA requires complicated iterative algorithms for proper resource allocation, which cannot fulfill the stringent latency requirement in resource constrained vehicles. Although data driven approaches can alleviate this issue, they suffer from poor generalizability and scarce training data. In this paper, we propose a fractional programming (FP) based deep unfolding (DU) approach to address resource allocation problem for a weighted sum rate optimization in RSMA. By carefully designing the penalty function, we couple the variable update with projected gradient descent algorithm (PGD). Following the structure of PGD, we embed few learnable parameters in each layer of the DU network. Through extensive simulation, we have shown that the proposed model-based neural networks has similar performance as optimal results given by traditional algorithm but with much lower computational complexity, less training data, and higher resilience to test set data and out-of-distribution (OOD) data.
Traditional digital implementations of neural accelerators are limited by high power and area overheads, while analog and non-CMOS implementations suffer from noise, device mismatch, and reliability issues. This paper introduces a CMOS Look-Up Table (LUT)-based Neural Accelerator (LUT-NA) framework that reduces the power, latency, and area consumption of traditional digital accelerators through pre-computed, faster look-ups while avoiding noise and mismatch of analog circuits. To solve the scalability issues of conventional LUT-based computation, we split the high-precision multiply and accumulate (MAC) operations into lower-precision MACs using a divide-and-conquer-based approach. We show that LUT-NA achieves up to $29.54\times$ lower area with $3.34\times$ lower energy per inference task than traditional LUT-based techniques and up to $1.23\times$ lower area with $1.80\times$ lower energy per inference task than conventional digital MAC-based techniques (Wallace Tree/Array Multipliers) without retraining and without affecting accuracy, even on lottery ticket pruned (LTP) models that already reduce the number of required MAC operations by up to 98%. Finally, we introduce mixed precision analysis in LUT-NA framework for various LTP models (VGG11, VGG19, Resnet18, Resnet34, GoogleNet) that achieved up to $32.22\times$-$50.95\times$ lower area across models with $3.68\times$-$6.25\times$ lower energy per inference than traditional LUT-based techniques, and up to $1.35\times$-$2.14\times$ lower area requirement with $1.99\times$-$3.38\times$ lower energy per inference across models as compared to conventional digital MAC-based techniques with $\sim$1% accuracy loss.
Quadcopters have been studied for decades thanks to their maneuverability and capability of operating in a variety of circumstances. However, quadcopters suffer from dynamical nonlinearity, actuator saturation, as well as sensor noise that make it challenging and time consuming to obtain accurate dynamic models and achieve satisfactory control performance. Fortunately, deep reinforcement learning came and has shown significant potential in system modelling and control of autonomous multirotor aerial vehicles, with recent advancements in deployment, performance enhancement, and generalization. In this paper, an end-to-end deep reinforcement learning-based controller for quadcopters is proposed that is secure for real-world implementation, data-efficient, and free of human gain adjustments. First, a novel actor-critic-based architecture is designed to map the robot states directly to the motor outputs. Then, a quadcopter dynamics-based simulator was devised to facilitate the training of the controller policy. Finally, the trained policy is deployed on a real Crazyflie nano quadrotor platform, without any additional fine-tuning process. Experimental results show that the quadcopter exhibits satisfactory performance as it tracks a given complicated trajectory, which demonstrates the effectiveness and feasibility of the proposed method and signifies its capability in filling the simulation-to-reality gap.
Mechanical metamaterial is a synthetic material that can possess extraordinary physical characteristics, such as abnormal elasticity, stiffness, and stability, by carefully designing its internal structure. To make metamaterials contain delicate local structures with unique mechanical properties, it is a potential method to represent them through high-resolution voxels. However, it brings a substantial computational burden. To this end, this paper proposes a fast inverse design method, whose core is an advanced deep generative AI algorithm, to generate voxel-based mechanical metamaterials. Specifically, we use the self-conditioned diffusion model, capable of generating a microstructure with a resolution of $128^3$ to approach the specified homogenized tensor matrix in just 3 seconds. Accordingly, this rapid reverse design tool facilitates the exploration of extreme metamaterials, the sequence interpolation in metamaterials, and the generation of diverse microstructures for multi-scale design. This flexible and adaptive generative tool is of great value in structural engineering or other mechanical systems and can stimulate more subsequent research.
Complex Evidence Theory (CET), an extension of the traditional D-S evidence theory, has garnered academic interest for its capacity to articulate uncertainty through Complex Basic Belief Assignment (CBBA) and to perform uncertainty reasoning using complex combination rules. Nonetheless, quantifying uncertainty within CET remains a subject of ongoing research. To enhance decision-making, a method for Complex Pignistic Belief Transformation (CPBT) has been introduced, which allocates CBBAs of multi-element focal elements to subsets. CPBT's core lies in the fractal-inspired redistribution of the complex mass function. This paper presents an experimental simulation and analysis of CPBT's generation process along the temporal dimension, rooted in fractal theory. Subsequently, a novel Fractal-Based Complex Belief (FCB) entropy is proposed to gauge the uncertainty of CBBA. The properties of FCB entropy are examined, and its efficacy is demonstrated through various numerical examples and practical application.
Field-of-view (FOV) recovery of truncated chest CT scans is crucial for accurate body composition analysis, which involves quantifying skeletal muscle and subcutaneous adipose tissue (SAT) on CT slices. This, in turn, enables disease prognostication. Here, we present a method for recovering truncated CT slices using generative image outpainting. We train a diffusion model and apply it to truncated CT slices generated by simulating a small FOV. Our model reliably recovers the truncated anatomy and outperforms the previous state-of-the-art despite being trained on 87% less data.
Self-supervised contrastive learning, which directly extracts inherent data correlations from unlabeled data, has been widely utilized to mitigate the data sparsity issue in sequential recommendation. The majority of existing methods create different augmented views of the same user sequence via random augmentation, and subsequently minimize their distance in the embedding space to enhance the quality of user representations. However, random augmentation often disrupts the semantic information and interest evolution pattern inherent in the user sequence, leading to the generation of semantically distinct augmented views. Promoting similarity of these semantically diverse augmented sequences can render the learned user representations insensitive to variations in user preferences and interest evolution, contradicting the core learning objectives of sequential recommendation. To address this issue, we leverage the inherent characteristics of sequential recommendation and propose the use of context information to generate more reasonable augmented positive samples. Specifically, we introduce a context-aware diffusion-based contrastive learning method for sequential recommendation. Given a user sequence, our method selects certain positions and employs a context-aware diffusion model to generate alternative items for these positions with the guidance of context information. These generated items then replace the corresponding original items, creating a semantically consistent augmented view of the original sequence. Additionally, to maintain representation cohesion, item embeddings are shared between the diffusion model and the recommendation model, and the entire framework is trained in an end-to-end manner. Extensive experiments on five benchmark datasets demonstrate the superiority of our proposed method.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.