Maximizing quality of experience (QoE) for interactive video streaming has been a long-standing challenge, as its delay-sensitive nature makes it more vulnerable to bandwidth fluctuations. While reinforcement learning (RL) has demonstrated great potential, existing works are either limited by fixed models or require enormous data/time for online adaptation, which struggle to fit time-varying and diverse network states. Driven by these practical concerns, we perform large-scale measurements on WeChat for Business's interactive video service to study real-world network fluctuations. Surprisingly, our analysis shows that, compared to time-varying network metrics, network sequences exhibit noticeable short-term continuity, sufficient for few-shot learning requirements. We thus propose Fiammetta, the first meta-RL-based bitrate adaptation algorithm for interactive video streaming. Building on the short-term continuity, Fiammetta accumulates learning experiences through offline meta-training and enables fast online adaptation to changing network states through a few gradient updates. Moreover, Fiammetta innovatively incorporates a probing mechanism for real-time monitoring of network states, and proposes an adaptive meta-testing mechanism for seamless adaptation. We implement Fiammetta on a testbed whose end-to-end network follows the real-world WeChat for Business traces. The results show that Fiammetta outperforms prior algorithms significantly, improving video bitrate by 3.6%-16.2% without increasing stalling rate.
Video retrieval is becoming increasingly important owing to the rapid emergence of videos on the Internet. The dominant paradigm for video retrieval learns video-text representations by pushing the distance between the similarity of positive pairs and that of negative pairs apart from a fixed margin. However, negative pairs used for training are sampled randomly, which indicates that the semantics between negative pairs may be related or even equivalent, while most methods still enforce dissimilar representations to decrease their similarity. This phenomenon leads to inaccurate supervision and poor performance in learning video-text representations. While most video retrieval methods overlook that phenomenon, we propose an adaptive margin changed with the distance between positive and negative pairs to solve the aforementioned issue. First, we design the calculation framework of the adaptive margin, including the method of distance measurement and the function between the distance and the margin. Then, we explore a novel implementation called "Cross-Modal Generalized Self-Distillation" (CMGSD), which can be built on the top of most video retrieval models with few modifications. Notably, CMGSD adds few computational overheads at train time and adds no computational overhead at test time. Experimental results on three widely used datasets demonstrate that the proposed method can yield significantly better performance than the corresponding backbone model, and it outperforms state-of-the-art methods by a large margin.
A long-standing goal of reinforcement learning is that algorithms can learn on training tasks and generalize well on unseen tasks like humans, where different tasks share similar dynamic with different reward functions. A general challenge is that it is nontrivial to quantitatively measure the similarities between these different tasks, which is vital for analyzing the task distribution and further designing algorithms with stronger generalization. To address this, we present a novel metric named Task Distribution Relevance (TDR) via optimal Q functions to capture the relevance of the task distribution quantitatively. In the case of tasks with a high TDR, i.e., the tasks differ significantly, we demonstrate that the Markovian policies cannot distinguish them, yielding poor performance accordingly. Based on this observation, we propose a framework of Reward Informed Dreamer (RID) with reward-informed world models, which captures invariant latent features over tasks and encodes reward signals into policies for distinguishing different tasks. In RID, we calculate the corresponding variational lower bound of the log-likelihood on the data, which includes a novel term to distinguish different tasks via states, based on reward-informed world models. Finally, extensive experiments in DeepMind control suite demonstrate that RID can significantly improve the performance of handling different tasks at the same time, especially for those with high TDR, and further generalize to unseen tasks effectively.
Despite the broad application of deep reinforcement learning (RL), transferring and adapting the policy to unseen but similar environments is still a significant challenge. Recently, the language-conditioned policy is proposed to facilitate policy transfer through learning the joint representation of observation and text that catches the compact and invariant information across environments. Existing studies of language-conditioned RL methods often learn the joint representation as a simple latent layer for the given instances (episode-specific observation and text), which inevitably includes noisy or irrelevant information and cause spurious correlations that are dependent on instances, thus hurting generalization performance and training efficiency. To address this issue, we propose a conceptual reinforcement learning (CRL) framework to learn the concept-like joint representation for language-conditioned policy. The key insight is that concepts are compact and invariant representations in human cognition through extracting similarities from numerous instances in real-world. In CRL, we propose a multi-level attention encoder and two mutual information constraints for learning compact and invariant concepts. Verified in two challenging environments, RTFM and Messenger, CRL significantly improves the training efficiency (up to 70%) and generalization ability (up to 30%) to the new environment dynamics.
Federated learning has attracted increasing attention with the emergence of distributed data. While extensive federated learning algorithms have been proposed for the non-convex distributed problem, federated learning in practice still faces numerous challenges, such as the large training iterations to converge since the sizes of models and datasets keep increasing, and the lack of adaptivity by SGD-based model updates. Meanwhile, the study of adaptive methods in federated learning is scarce and existing works either lack a complete theoretical convergence guarantee or have slow sample complexity. In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on the momentum-based variance-reduced technique in cross-silo FL. We first explore how to design the adaptive algorithm in the FL setting. By providing a counter-example, we prove that a simple combination of FL and adaptive methods could lead to divergence. More importantly, we provide a convergence analysis for our method and prove that our algorithm is the first adaptive FL algorithm to reach the best-known samples $O(\epsilon^{-3})$ and $O(\epsilon^{-2})$ communication rounds to find an $\epsilon$-stationary point without large batches. The experimental results on the language modeling task and image classification task with heterogeneous data demonstrate the efficiency of our algorithms.
Meta reinforcement learning (meta RL), as a combination of meta-learning ideas and reinforcement learning (RL), enables the agent to adapt to different tasks using a few samples. However, this sampling-based adaptation also makes meta RL vulnerable to adversarial attacks. By manipulating the reward feedback from sampling processes in meta RL, an attacker can mislead the agent into building wrong knowledge from training experience, which deteriorates the agent's performance when dealing with different tasks after adaptation. This paper provides a game-theoretical underpinning for understanding this type of security risk. In particular, we formally define the sampling attack model as a Stackelberg game between the attacker and the agent, which yields a minimax formulation. It leads to two online attack schemes: Intermittent Attack and Persistent Attack, which enable the attacker to learn an optimal sampling attack, defined by an $\epsilon$-first-order stationary point, within $\mathcal{O}(\epsilon^{-2})$ iterations. These attack schemes freeride the learning progress concurrently without extra interactions with the environment. By corroborating the convergence results with numerical experiments, we observe that a minor effort of the attacker can significantly deteriorate the learning performance, and the minimax approach can also help robustify the meta RL algorithms.
Deep latent variable models have achieved significant empirical successes in model-based reinforcement learning (RL) due to their expressiveness in modeling complex transition dynamics. On the other hand, it remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of RL. In this paper, we provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle in the face of uncertainty for exploration. In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models. Theoretically, we establish the sample complexity of the proposed approach in the online and offline settings. Empirically, we demonstrate superior performance over current state-of-the-art algorithms across various benchmarks.
What matters for contrastive learning? We argue that contrastive learning heavily relies on informative features, or "hard" (positive or negative) features. Early works include more informative features by applying complex data augmentations and large batch size or memory bank, and recent works design elaborate sampling approaches to explore informative features. The key challenge toward exploring such features is that the source multi-view data is generated by applying random data augmentations, making it infeasible to always add useful information in the augmented data. Consequently, the informativeness of features learned from such augmented data is limited. In response, we propose to directly augment the features in latent space, thereby learning discriminative representations without a large amount of input data. We perform a meta learning technique to build the augmentation generator that updates its network parameters by considering the performance of the encoder. However, insufficient input data may lead the encoder to learn collapsed features and therefore malfunction the augmentation generator. A new margin-injected regularization is further added in the objective function to avoid the encoder learning a degenerate mapping. To contrast all features in one gradient back-propagation step, we adopt the proposed optimization-driven unified contrastive loss instead of the conventional contrastive loss. Empirically, our method achieves state-of-the-art results on several benchmark datasets.
Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.